题目
问题描述
有一个学校的老师共用N个教室,按照规定,所有的钥匙都必须放在公共钥匙盒里,老师不能带钥匙回家。每次老师上课前,都从公共钥匙盒里找到自己上课的教室的钥匙去开门,上完课后,再将钥匙放回到钥匙盒中。
钥匙盒一共有N个挂钩,从左到右排成一排,用来挂N个教室的钥匙。一串钥匙没有固定的悬挂位置,但钥匙上有标识,所以老师们不会弄混钥匙。
每次取钥匙的时候,老师们都会找到自己所需要的钥匙将其取走,而不会移动其他钥匙。每次还钥匙的时候,还钥匙的老师会找到最左边的空的挂钩,将钥匙挂在这个挂钩上。如果有多位老师还钥匙,则他们按钥匙编号从小到大的顺序还。如果同一时刻既有老师还钥匙又有老师取钥匙,则老师们会先将钥匙全还回去再取出。
今天开始的时候钥匙是按编号从小到大的顺序放在钥匙盒里的。有K位老师要上课,给出每位老师所需要的钥匙、开始上课的时间和上课的时长,假设下课时间就是还钥匙时间,请问最终钥匙盒里面钥匙的顺序是怎样的?
输入格式
输入的第一行包含两个整数N, K。
接下来K行,每行三个整数w, s, c,分别表示一位老师要使用的钥匙编号、开始上课的时间和上课的时长。可能有多位老师使用同一把钥匙,但是老师使用钥匙的时间不会重叠。
保证输入数据满足输入格式,你不用检查数据合法性。
输出格式
输出一行,包含N个整数,相邻整数间用一个空格分隔,依次表示每个挂钩上挂的钥匙编号。
样例1
输入:
5 2
4 3 3
2 2 7
输出:
1 4 3 2 5
说明:
第一位老师从时刻3开始使用4号教室的钥匙,使用3单位时间,所以在时刻6还钥匙。第二位老师从时刻2开始使用钥匙,使用7单位时间,所以在时刻9还钥匙。
每个关键时刻后的钥匙状态如下(X表示空):
时刻2后为1X345;
时刻3后为1X3X5;
时刻6后为143X5;
时刻9后为14325。
样例2
输入:
5 7
1 1 14
3 3 12
1 15 12
2 7 20
3 18 12
4 21 19
5 30 9
输出:
1 2 3 5 4
评测用例规模与约定
对于30%的评测用例,1 ≤ N, K ≤ 10, 1 ≤ w ≤ N, 1 ≤ s, c ≤ 30;
对于60%的评测用例,1 ≤ N, K ≤ 50,1 ≤ w ≤ N,1 ≤ s ≤ 300,1 ≤ c ≤ 50;
对于所有评测用例,1 ≤ N, K ≤ 1000,1 ≤ w ≤ N,1 ≤ s ≤ 10000,1 ≤ c ≤ 100。
分析
1.初始化起始钥匙盒状态
2.找出第一次取钥匙的时间(开始时间)和最后放钥匙的时间(结束时间)
3.从开始时间到结束时间,进行模拟运行:
3.1 找出此时刻借钥匙和还钥匙的老师
3.2 先处理还钥匙事件
3.2.1 先对还钥匙的老师进行冒泡排序,按钥匙号从小到大
3.2.2 依次归还钥匙
3.3 再处理借钥匙事件
3.4 结束后,将借钥匙和还钥匙的老师都清空
4.输出最后钥匙盒的状态
代码
/*
20190922
csp试题2:公共钥匙盒
*/
#include <iostream>
using namespace std;
//借钥匙的记录 结构体
//包含钥匙的id, 借的时间, 归还的时间(= 开始上课的时间+上课时长)
struct Borrows{
int id;
int borrow_time;
int back_time;
};
Borrows borrow[1001]; //借钥匙的记录
int keys[1001]; //钥匙盒中的状态
int borrow_teachers[1001]; //借钥匙的老师
int borrow_num = 0; //借钥匙的老师人数
int back_teachers[1001]; //还钥匙的老师
int back_num = 0; //还钥匙的老师人数
int main(){
//接收数据
int n;
cin >>n;
int b_num;
cin >>b_num;
int length; //时长
for(int i=0; i<b_num; i++){
cin >>borrow[i].id;
cin >>borrow[i].borrow_time;
cin >>length;
borrow[i].back_time = borrow[i].borrow_time + length;
}
//1.初始化起始钥匙盒状态
for(int i=0; i<n; i++){
keys[i] = i+1;
}
//2.找出第一次取钥匙的时间和最后放钥匙的时间
int begin = borrow[0].borrow_time;
int end = borrow[0].back_time;
for(int i=1; i<b_num; i++){
//最小开始时间
if(begin > borrow[i].borrow_time){
begin = borrow[i].borrow_time;
}
//最大结束时间
if(end < borrow[i].back_time){
end = borrow[i].back_time;
}
}
//3.从开始时间模拟到结束时间
for(int i=begin; i<=end; i++){
//3.1 找出此时刻借钥匙和还钥匙的老师
for(int j=0; j<b_num; j++){
if(borrow[j].borrow_time == i){
borrow_teachers[borrow_num] = j;
borrow_num++;
}
if(borrow[j].back_time == i){
back_teachers[back_num] = j;
back_num++;
}
}
//3.2 先处理还钥匙事件
if(back_num > 0){
//3.2.1 先对还钥匙的老师进行冒泡排序,按钥匙号从小到大
for(int j=0; j<back_num-1; j++){
for(int k=0; k<back_num-j-1; k++){
if(borrow[back_teachers[k]].id > borrow[back_teachers[k+1]].id){
int temp = back_teachers[k];
back_teachers[k] = back_teachers[k+1];
back_teachers[k+1] = temp;
}
}
}
//3.2.2 依次归还钥匙
for(int j=0; j<back_num; j++){
for(int k=0; k<n; k++){
if(keys[k] == 0){
keys[k] = borrow[back_teachers[j]].id;
break;
}
}
}
}
//3.3 再处理借钥匙事件
for(int j=0; j<borrow_num; j++){
for(int k=0; k<n; k++){
if(borrow[borrow_teachers[j]].id == keys[k]){
keys[k] = 0;
break;
}
}
}
//3.4 结束后,将借钥匙和还钥匙的老师都清空
for(int j=0; j<borrow_num; j++){
borrow_teachers[j] = 0;
}
for(int j=0; j<back_num; j++){
back_teachers[j] = 0;
}
borrow_num = 0;
back_num = 0;
}
//4.输出最后钥匙盒的状态
for(int i=0; i<n; i++){
cout <<keys[i]<<" ";
}
cout <<endl;
return 0;
}
总结
步骤繁琐,过程复杂,但解题思路是清晰明确的。在写代码过程中注意矩阵或数组索引的使用。