这里仅仅做一些数学上的简单分析,首先看sigmoid的公式:
它的导数:
的图像如下:
也就是说任何输入都会被缩放到0到1,如果隐层的所有layer都使用sigmoid,除了第一层的输入,最后一层的输出,其他层的输入输出都是0到1,看看的完整图像:
z大概在-5到5之间,才有值,而除第一层隐层的输入都在0到1之间,所以
的图像如下:
最终取值大概0.2到0.25之间,下面以一个简单的神经原结构举例:
由于会把
缩小4至5倍,而这个
又会影响前一层的
,反向下去,每一层的
在不断被缩小,深度越深这种连锁反应越明显,越靠近输入层越小,
中a又是0到1之间的梯度再次被整体缩小,这里主要考虑了
以及
的传递性以及输入a带来的影响,我认为权重w只会对局部的
带来影响,而
带来的这种连续缩小的影响将传递到计算前层的
中。
梯度消失带来的影响,靠近输入层的参数几乎不能被更新,靠近输入层的layer预测结果不准确,产生对整个后面的影响,最后无法训练。