[PKU暑课笔记] 动态规划 POJ1163数字三角形

一●引入 POJ1163 The Triangle 数字三角形 http://poj.org/problem?id=1163


在上面的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大。

路径上的每一步都只能往左下或右下走。

只需要求出这个最大和即可,不必给出具体路径。三角形的行数大于1小于等于100,数字为 0 - 99。


思路:

1、用二维数组存放数字三角形。

2、D(r, j)  : 第r行第 j 个数字(r,j从1开始算) 

      MaxSum(r, j) : 从D(r,j)到底边的各条路径中, 最佳路径的数字之和。

3、问题:求 MaxSum(1,1)


D(r, j)出发,下一步只能走D(r+1,j)或者D(r+1, j+1)。故对于N行的三角形:

if (r == N)
    MaxSum(r,j) = D(r,j);
else
    MaxSum(r,j) = Max{MaxSum(r+1,j), MaxSum(r+1,j+1)} + D(r,j);

则递归程序:

#include <iostream>
#include <algorithm>
#define MAX 101
using namespace std;
int D[MAX][MAX];
int n;
int MaxSum(int i, int j)
{
    if(i==n)
        return D[i][j];
    int x = MaxSum(i+1,j);
    int y = MaxSum(i+1,j+1);
    return max(x,y)+D[i][j];
}
int main()
{
    int i,j;
    cin >> n;
    for(i=1; i<=n; i++)
        for(j=1; j<=i; j++)
            cin >> D[i][j];
    cout << MaxSum(1,1) << endl;
}

超时:如果采用递规的方法,深度遍历每条路径,存在大量重复计算。时间复杂度为 2^n,对于 n = 100 行,肯定超时。
==>改进:如果每算出一个MaxSum(r,j)就保存起来,下次用到其值的时候直接取用,则可免去重复计算。【O(n^2)】(三角形的数字总数是 n(n+1)/2)

数字三角形的记忆递归型动归程序:

/*#include <iostream>
#include <algorithm>
using namespace std;
#define MAX 101
int D[MAX][MAX];
int n;*/
int maxSum[MAX][MAX];
int MaxSum(int i, int j)
{
    if( maxSum[i][j] != -1 )
        return maxSum[i][j];
    if(i==n)   
        maxSum[i][j] = D[i][j];
    else
    {
        int x = MaxSum(i+1,j);
        int y = MaxSum(i+1,j+1);
        maxSum[i][j] = max(x,y)+ D[i][j];
    }
    return maxSum[i][j];
}
/*int main()
{
    int i,j;
    cin >> n;
    for(i=1; i<=n; i++)
        for(j=1; j<=i; j++)
        {
            cin >> D[i][j];*/
            maxSum[i][j] = -1;
        /*}
    cout << MaxSum(1,1) << endl;
}*/

进一步,递归转递推==>“人人为我”递推型动归程序

/*#include <iostream>
#include <algorithm>
using namespace std;
#define MAX 101
int D[MAX][MAX];
int n;
int maxSum[MAX][MAX];

int main()
{
    int i,j;
    cin >> n;
    for(i=1; i<=n; i++)
        for(j=1; j<=i; j++)
            cin >> D[i][j];*/
    for( int i = 1; i <= n; ++i )
        maxSum[n][i] = D[n][i];
    for( int i = n-1; i>= 1;  --i )
        for( int j = 1; j <= i; ++j )
            maxSum[i][j]=max(maxSum[i+1][j],maxSum[i+1][j+1]) + D[i][j];
    cout << maxSum[1][1] << endl;
}

空间优化==>无需二维,而是用一维数组maxSum[MAX]从底层一行行向上递推。

/*#include <iostream>
#include <algorithm>
using namespace std;
#define MAX 101
int D[MAX][MAX];
int n;*/
int maxSum[MAX];

/*int main()
{
    int i,j;
    cin >> n;
    for(i=1; i<=n; i++)
        for(j=1; j<=i; j++)
            cin >> D[i][j];*/
    for( int i = 1; i <= n; ++i )
        maxSum[i] = D[n][i];
    for( int i = n-1; i>= 1;  --i )
        for( int j = 1; j <= i; ++j )
            maxSum[j]=max(maxSum[j],maxSum[j+1]) + D[i][j];
    cout << maxSum[1] << endl;
}

二●递归到动规的一般转化方法 

递归函数有n个参数,就定义一个n维的数组,

数组的下标是递归函数参数的取值范围

数组元素的值是递归函数的返回值

这样就可以从边界值开始, 逐步填充数组,相当于计算递归函数值的逆过程。

三●动规解题的一般思路 

1、将原问题分解为子问题

把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变小了。

子问题都解决,原问题即解决(数字三角形例)。

问题的解一旦求出就会被保存,所以每个子问题只需求解一次。

2、确定状态

在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状态”。

一个“状态”对应于一个或多个子问题, 所谓某个“状态”下的“值”,就是这个“状态”所对应的子问题的解。

所有“状态”的集合,构成问题的“状态空间”。“状态空间”的大小,与用动态规划解决问题的时间复杂度直接相关。

在数字三角形的例子里,一共有N×(N+1)/2个数字,所以这个问题的状态空间里一共就有N×(N+1)/2个状态。

整个问题的时间复杂度是状态数目乘以计算每个状态所需时间。

在数字三角形里每个“状态”只需要经过一次,且在每个状态上作计算所花的时间都是和N无关的常数。

用动态规划解题,经常碰到的情况是,K个整型变量能构成一个状态(如数字三角形中的行号和列号这两个变量构成“状态”)。

如果这K个整型变量的取值范围分别是 N1, N2, ……Nk,那么,我们就可以用一个K维的数组 array[N1] [N2]……[Nk]来存储各个状态的“值”。

这个“值”未必就是一个整数或浮点数,可能是需要一个结构才能表示的,那么array就可以是一个结构数组。

一个 “状态”下的“值”通常会是一个或多个子问题的解。

3、确定一些初始状态(边界状态)的值

以“数字三角形”为例,初始状态就是底边数字,值就是底边数字值。

4、确定状态转移方程

定义出什么是“状态”,以及在该 “状态”下的“值”后,就要找出不同的状态之间如何迁移

――即如何从一个或多个“值”已知的 “状态”,求出另一个“状态”的“值”(“人人为我”递推型)。

状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方 程”。

eg.数字三角形的状态转移方程


四●能用动规解决的问题的特点

1)问题具有最优子结构性质。如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质。

2)无后效性。当前的若干个状态值一旦确定,则此后过程的演变就只和这若干个状态的值有关,

和之前是采取哪种手段或经过哪条路径演变到当前的这若干个状态,没有关系。 


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值