斐波那契数列

斐波那契数列

 斐波那契数列(Fibonacci sequence),又称 黄金分割数列、因 数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“ 兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以 递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

定义

编辑
斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........

这个数列从第3项开始,每一项都等于前两项之和。
斐波那契 数列的定义者,是意大利数学家 列昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是 比萨。他被人称作“比萨的 列昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了 印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的 阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在 埃及叙利亚、希腊、 西西里普罗旺斯等地研究数学。


通项公式

编辑

递推公式

斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式::F(n)=F(n-1)+F(n-2)
显然这是一个线性 递推数列

通项公式

(如上,又称为“比内公式”,是用 无理数表示有理数的一个范例。)
注:此时

通项公式推导

方法一:利用特征方程(线性代数解法)
线性 递推数列特征方程为:
  

  解得
  
.
  则

  ∵

  ∴
 
  解得

  
方法二: 待定系数法构造 等比数列1( 初等代数解法)
设常数
.
使得
时,有
……
联立以上n-2个式子,得:
上式可化简得:
那么
……
(这是一个以
为首项、以
为末项、
为公比的 等比数列的各项的和)。
的解为
方法三: 待定系数法构造 等比数列2(初等代数解法)
构造方程
解得
,所以
由(1)(2)式得
化简可得
方法四:母函数法。
对于斐波那契数列{a n},有a 1=a 2=1,a n=a n-1+a n-2(n>2时)
令S(x)=a 1x+a 2x 2+……+a nx n
那么有S(x)*(1-x-x 2)=a 1x+(a 2-a 1)x 2+……+(a n-a n-1-a n-2)x n=x.
因此S(x)=
.
不难证明1-x-x 2=-(x+
)(x+
)=(1-
*x)(1-
*x).
因此S(x)=
*[x/(1-
*x)-x/(1-
*x)].
再利用展开式1/(1-x)=1+x+x 2+x 3+……+x n
于是就可以得S(x)=b 1x+b 2x 2+……+b nx n
其中b n=
*[(
) n - (
) n].
因此可以得到a n=b n=
*[(
)- (
)]

与黄金分割

关系

有趣的是,这样一个完全是 自然数的数列,通项公式却是用 无理数来表达的。而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近 黄金分割0.618(或者说后一项与前一项的比值小数部分越来越逼近0.618)。
1÷1=1,1÷2=0.5,2÷3=0.666...,3÷5=0.6,5÷8=0.625…………,55÷89=0.617977……………144÷233=0.618025…46368÷75025=0.6180339886…...
越到后面,这些比值越接近黄金比.

证明

两边同时除以
得到:
的极限存在,设其极限为x,
所以
由于
解得
所以极限是黄金分割比。


特性

平方与前后项

从第二项开始,每个 奇数项的 平方都比前后两项之积多1,每个 偶数项的平方都比前后两项之积少1。
如:第二项1的平方比它的前一项1和它的后一项2的积2少1,第三项2的平方比它的前一项1和它的后一项3的积3多1。
(注: 奇数项和偶数项是指项数的奇偶,而并不是 指数列的数字本身的奇偶,比如从数列第二项1开始数,第4项5是奇数,但它是偶数项,如果认为5是奇数项,那就误解题意,怎么都说不通)
证明经计算可得:[f(n)]^2-f(n-1)f(n+1)=(-1)^(n-1)

与集合子集

斐波那契数列的第n+2项同时也代表了 集合{1,2,...,n}中所有不 包含相邻正 整数子集个数。

奇数项求和

偶数项求和

平方求和

隔项关系

f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]

两倍项关系

f(2n)/f(n)=f(n-1)+f(n+1)

其他公式



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值