-
斐波那契数列
斐波那契数列(Fibonacci sequence),又称
黄金分割数列、因
数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“
兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以
递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
定义
编辑
斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........
通项公式
编辑递推公式
斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式::F(n)=F(n-1)+F(n-2)
显然这是一个线性
递推数列。
通项公式
(如上,又称为“比内公式”,是用
无理数表示有理数的一个范例。)
注:此时
通项公式推导
方法一:利用特征方程(线性代数解法)
设常数
,
.
使得
则
,
……
联立以上n-2个式子,得:
∵
,
上式可化简得:
那么
……
则
设
得
构造方程
解得
,所以
由(1)(2)式得
方法四:母函数法。
对于斐波那契数列{a
n},有a
1=a
2=1,a
n=a
n-1+a
n-2(n>2时)
令S(x)=a
1x+a
2x
2+……+a
nx
n。
那么有S(x)*(1-x-x
2)=a
1x+(a
2-a
1)x
2+……+(a
n-a
n-1-a
n-2)x
n=x.
因此S(x)=
.
不难证明1-x-x
2=-(x+
)(x+
)=(1-
*x)(1-
*x).
因此S(x)=
*[x/(1-
*x)-x/(1-
*x)].
再利用展开式1/(1-x)=1+x+x
2+x
3+……+x
n
于是就可以得S(x)=b
1x+b
2x
2+……+b
nx
n
其中b
n=
*[(
)
n - (
)
n].
因此可以得到a
n=b
n=
*[(
)- (
)]
与黄金分割
关系
有趣的是,这样一个完全是
自然数的数列,通项公式却是用
无理数来表达的。而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近
黄金分割0.618(或者说后一项与前一项的比值小数部分越来越逼近0.618)。
1÷1=1,1÷2=0.5,2÷3=0.666...,3÷5=0.6,5÷8=0.625…………,55÷89=0.617977……………144÷233=0.618025…46368÷75025=0.6180339886…...
越到后面,这些比值越接近黄金比.
证明
两边同时除以
得到:
若
的极限存在,设其极限为x,
则
。
所以
。
由于
解得
所以极限是黄金分割比。
特性
平方与前后项
如:第二项1的平方比它的前一项1和它的后一项2的积2少1,第三项2的平方比它的前一项1和它的后一项3的积3多1。
(注:
奇数项和偶数项是指项数的奇偶,而并不是
指数列的数字本身的奇偶,比如从数列第二项1开始数,第4项5是奇数,但它是偶数项,如果认为5是奇数项,那就误解题意,怎么都说不通)
与集合子集
奇数项求和
偶数项求和
平方求和
隔项关系
f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]
两倍项关系
f(2n)/f(n)=f(n-1)+f(n+1)