numpy 中的 np.pad() 函数

一、参数解释

ndarray = numpy.pad(array, pad_width, mode, **kwargs)

array为要填补的数组
pad_width是在各维度的各个方向上想要填补的长度,如((1,2),(2,2)),表示在第一个维度上水平方向上padding=1,垂直方向上padding=2,在第二个维度上水平方向上padding=2,垂直方向上padding=2。如果直接输入一个整数,则说明各个维度和各个方向所填补的长度都一样。
mode为填补类型,即怎样去填补,有“constant”,“edge”等模式,如果为constant模式,就得指定填补的值,如果不指定,则默认填充0。
剩下的都是一些可选参数,具体可查看
pad函数详解文档
ndarray为填充好的返回值。

二、例子
1、对一维数组填充
【code】

import numpy as np
array = np.array([1, 1, 1])
 #(1,2)表示在一维数组array前面填充1位,最后面填充2位
 #constant_values=(0,2) 表示前面填充0,后面填充2
ndarray=np.pad(array,(1,2),'constant', constant_values=(0,2)) 

print("array",array)
print("ndarray=",ndarray)


【result】
array [1 1 1]
ndarray= [0 1 1 1 2 2]

2、对二维数组填充
【code】

import numpy as np
array = np.array([[1, 1],[2,2]])
"""
((1,1),(2,2))表示在二维数组array第一维(此处便是行)前面填充1行,最后面填充1行;
                 在二维数组array第二维(此处便是列)前面填充2列,最后面填充2列
constant_values=(0,3) 表示第一维填充0,第二维填充3
"""
ndarray=np.pad(array,((1,1),(2,2)),'constant', constant_values=(0,3)) 

print("array",array)
print("ndarray=",ndarray)
 
 
【result】
array [[1 1]
       [2 2]]

ndarray= [[0 0 0 0 3 3]
          [0 0 1 1 3 3]
          [0 0 2 2 3 3]
          [0 0 3 3 3 3]]

3、对三维数组填充,格式与上面一致,只是对应的pad_width也要再增加一个元组,例如
((1,1),(1,2),(2,2))
注意,在三维数组中,如果只想在行列上进行,则只要将pad_width中的第三个元组设为(0,0)即可。

参考:
numpy中pad函数的常用方法

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页