SIRS传染病模型求解及MATLAB实现

模型假设

1、总人数N不变。人群分为健康者、病人和移出者三类。t时刻三类人数量分别记为s(t),i(t)和r(t)。

2、病人的日接触率为\lambda,日治愈率为\mu

3、移出者康复后只有暂时免疫力,单位时间内将有\gamma的移出者丧失免疫而可能再次被感染。

模型构成

由假设1显然有 

s(t)+i(t)+r(t)=N          (1-1)

建立关于s(t),i(t)和r(t)的三个方程

\left\{\begin{matrix}i(t+\bigtriangleup t)-i(t)=\lambda s(t)\cdot i(t)\cdot \bigtriangleup (t)-\mu i(t)\cdot \bigtriangleup (t) \\ s(t+\bigtriangleup t)-s(t)=-\lambda s(t)\cdot i(t)\cdot \bigtriangleup (t)+\gamma r(t)\cdot \bigtriangleup (t) \\ r(t+\bigtriangleup t)-r(t)=\mu i(t)\cdot \bigtriangleup (t)-\gamma r(t)\cdot \bigtriangleup (t) \end{matrix}\right.          (1-2)

记初始时刻的健康人、病人和移出者人的比例分别是s_{0}(s_{0}>0)i_{0}(i_{0}>0)r_{0}(r_{0}>0),则SIRS模型的方程可以写作

\left\{\begin{matrix} \frac{\mathrm{d} s}{\mathrm{d} t}=-\lambda si+\gamma r \\\frac{\mathrm{d} i}{\mathrm{d} t}=\lambda si-\mu i \\\frac{\mathrm{d}r }{\mathrm{d} t}=\mu i-\gamma r \end{matrix}\right.           (1-3)

方程(1-3)中无法求出s(t),i(t)和r(t)的解析解,我们先作稳定性分析。

稳定性分析

由于s(t)+i(t)+r(t)=N是一个常数,所以令r=N-s-i,则式(1-3)可以降阶为

\left\{\begin{matrix} \frac{\mathrm{d} s}{\mathrm{d} t}=-\lambda si+\gamma N-\gamma s-\gamma i \\ \frac{\mathrm{d} i}{\mathrm{d} t}=\lambda si-\mu i \end{matrix}\right.          (1-4)

引理1 令

评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值