题目链接
呵呵。大家都知道五服以内不得通婚,即两个人最近的共同祖先如果在五代以内(即本人、父母、祖父母、曾祖父母、高祖父母)则不可通婚。本题就请你帮助一对有情人判断一下,他们究竟是否可以成婚?
输入格式:
输入第一行给出一个正整数N(2 ≤ N ≤104),随后N行,每行按以下格式给出一个人的信息:
本人ID 性别 父亲ID 母亲ID
其中ID是5位数字,每人不同;性别M代表男性、F代表女性。如果某人的父亲或母亲已经不可考,则相应的ID位置上标记为-1。
接下来给出一个正整数K,随后K行,每行给出一对有情人的ID,其间以空格分隔。
注意:题目保证两个人是同辈,每人只有一个性别,并且血缘关系网中没有乱伦或隔辈成婚的情况。
输出格式:
对每一对有情人,判断他们的关系是否可以通婚:如果两人是同性,输出Never Mind;如果是异性并且关系出了五服,输出Yes;如果异性关系未出五服,输出No。
输入样例:
24
00001 M 01111 -1
00002 F 02222 03333
00003 M 02222 03333
00004 F 04444 03333
00005 M 04444 05555
00006 F 04444 05555
00007 F 06666 07777
00008 M 06666 07777
00009 M 00001 00002
00010 M 00003 00006
00011 F 00005 00007
00012 F 00008 08888
00013 F 00009 00011
00014 M 00010 09999
00015 M 00010 09999
00016 M 10000 00012
00017 F -1 00012
00018 F 11000 00013
00019 F 11100 00018
00020 F 00015 11110
00021 M 11100 00020
00022 M 00016 -1
00023 M 10012 00017
00024 M 00022 10013
9
00021 00024
00019 00024
00011 00012
00022 00018
00001 00004
00013 00016
00017 00015
00019 00021
00010 00011
输出样例:
Never Mind
Yes
Never Mind
No
Yes
No
Yes
No
No
#include<iostream>
#include<cstring>
using namespace std;
typedef struct Node{
char sex;
int fId;
int mId;
}Node;
Node p[100001];
int flag,visited[100001];
void f(int a,int sum){
if(sum > 5 || a == -1 || a == 0)//如果代数大于5代,或者a==-1,说明都不在人世,
//或者a==0说明没有被赋值,直接返回
return;
visited[a]++;//记录被访问的次数
if(visited[a] >= 2)//如果五代以内的同一个人被访问超过2次,说明在五代之内有共同的祖先
flag = 0;
f(p[a].fId,sum + 1);//递归调用,a的父亲,代数+1
f(p[a].mId,sum + 1);//递归调用,a的母亲,代数+1
return;
}
int main(){
int n,selfId,fId,mId,k,a,b;
char c;
scanf("%d",&n);
for(int i = 0;i < n;i++){
scanf("%d %c%d%d",&selfId,&c,&fId,&mId);
p[selfId].sex = c;//记录自己的性别
p[selfId].fId = fId;//记录父亲的Id
p[selfId].mId = mId;
p[fId].sex = 'M';//记录自己父亲的性别,否则,可能会漏掉
p[mId].sex = 'F';//记录自己母亲的性别,否则,可能会漏掉
}
scanf("%d",&k);
while(k--){
flag = 1;//标记变量,默认为1
memset(visited,0,sizeof(visited));//每循环一次,必须进行一次初始化
scanf("%d%d",&a,&b);
if(p[a].sex == p[b].sex){
printf("Never Mind\n");
continue;
}
f(a,1);//以a为起点,代数为一代,进行寻找
f(b,1);//以a为起点,代数为一代,进行寻找
if(flag)
printf("Yes\n");
else
printf("No\n");
}
return 0;
}