VS2019+CMAKE+OPENCV 实现GPU加速视频解码(一)本地MP4文件

本文详细介绍了如何使用Visual Studio 2019、CMake和OpenCV 4.5.3在Windows环境下实现GPU加速的MP4视频解码。首先,介绍了所需的设备环境和软件版本,包括CUDA 11.0和cudnn 8.2.1。接着,讲述了安装和配置过程,如显卡驱动、CUDA、CMake和Visual Studio的安装,以及OpenCV的编译。在CMake过程中,强调了配置选项的选择,如去掉不需要的模块并确保支持GPU。最后,通过测试样例,作者发现需要手动下载并处理NVIDIA的Video Codec SDK以解决解码问题,尽管遇到一些命名不一致的困扰,但最终解码部分得以成功运行,但在imshow显示时遇到了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 0. 设备环境:  

Windows10, Visual Studio 2019, CMake 3.21.0, Nvidia 显卡1050ti  驱动 Version: 471.41, CUDA 11.0, cudnn 8.2.1, OpenCV 4.5.3。

1. 安装:

实习的地方暂时没有电脑给我用,我于是直接把自己的电脑系统重装了,之前的环境做过毕设,做过老师的任务,配过各种各样的东西,实在是太乱了,全部重来或许更好一点。重装好之后,还是经典地重装显卡驱动,直接上NVIDIA官网找推荐的驱动安装。

再安装CUDA,之前做tensorflow的项目的时候就头铁什么都安装的最新的,于是环境死活配不好。现在实在是不敢了,于是退而求其次装了11.0,而且pytorch官网上还没有支持最新的11.4版本。再去官网找到和CUDA版本对应的cudnn即可,这里需要注意版本的对应问题(之前毕设的时候,版本都是对应的也还是不行,最后全都降级成了老版本驱动和CUDA9.0才搞定)。这里详细的教程各种博客都有,就不细表了。

显卡需要的部分安装完之后,再安装Cmake和VS。安装VS其实只需要C++就可以了,其他的组件大家按需下载安装。之后下载OpenCV和OpenCV contribute,解压放到一起,再配置环境变量。这里有个地方需要注意,在之后用VS编译后还要再配一次环境变量,记得把VS编译出的路径上移放在opencv自己路径的前面

2.Cmake和VS部分

OpenCV应该可以不编译直接用,但是不知道那样的话contribute里的gpu能不能用,大家可以试试。我这里用CMAKE编译,然后就开始麻烦起来了。我建议看一下OpenCV的官方教程,然后用cmake的gui来做。进入cmake先选好和自己VS版本对应的选项,然后开始配置opencv。

第一个选源码文件夹,第二个选安装路径。 然后configure,会出来一堆红色的,这里记得去掉和添加一些选项,要不然以后没注意重新编译又要好久。首先就可以把wechar_qrcode去掉,这个不挂梯子基本上下载不了,然后项目一般都用不到。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值