Aprior算法(R语言实现)

本文介绍了Aprior算法在关联规则分析中的应用,特别是使用R语言进行中药与症状关联规则挖掘的过程。首先,定义了关联规则、支持度和置信度等概念,接着详细阐述了Aprior算法的步骤。通过设置最小支持度和置信度阈值,生成频繁项集,并用R的arules包进行实际操作,包括数据导入、转换、规则生成和可视化,以揭示中药与症状之间的潜在联系。
摘要由CSDN通过智能技术生成

1.关联规则

       关联规则分析也称购物篮分析,用于发现事物之间的间接联系。比如,通过观察发现,在一个商店里,购买了面包的顾客大多同时会购买牛奶,则面包对应牛奶可以是一个规则({面包}=>{牛奶})

2.Aprior算法

       Aprior算法是关联规则的最常用也是最经典的挖掘频繁项集的算法。其核心思想是通过连接产生候选项与其支持度然后通过剪枝生成频繁项集。

2.1 相关定义

2.1.1 项集 

项集——项的集合,k项集——包含k个项的项集,例如集合{牛奶,麦片,糖}是一个3项集。

2.1.2 支持度和置信度

关联规则的支持度——项集A、B同时发生的概率:

Support(A=>B)=P(A U B)

关联规则的置信度——项集A发生&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值