r语言实现关联分析--关联规则挖掘(Apriori算法)

本文介绍了关联规则挖掘的概念,特别是Apriori算法,阐述了支持度和置信度的计算,并展示了如何用R语言的`arules`包实现Apriori算法,从而在数据集中发现频繁项集和关联规则。
摘要由CSDN通过智能技术生成

关联规则挖掘是数据挖掘领域中的一种技术,用于发现数据集中的关联关系。在关联规则挖掘中,我们可以使用Apriori算法来发现频繁项集和关联规则。本文将介绍如何使用R语言实现关联规则挖掘,包括Apriori算法的实现。

什么是关联规则挖掘?

关联规则挖掘是一种数据挖掘技术,用于发现数据集中的关联关系。在关联规则挖掘中,我们可以使用Apriori算法来发现频繁项集和关联规则。频繁项集是指在数据集中经常出现的项集,而关联规则是指一组项之间的关系,例如“如果购买了牛奶,则可能购买面包”。

Apriori算法

Apriori算法是一种用于发现频繁项集和关联规则的算法。该算法基于两个重要概念:支持度和置信度。

支持度是指项集在数据集中出现的频率。例如,如果项集{牛奶,面包}在100个交易中出现了20次,则其支持度为20/100=0.2。

置信度是指如果一个交易中包含了一个项集,则该交易也包含了另一个项集的概率。例如,如果项集{牛奶,面包}的置信度为0.6,则表示如果一个交易中包含了牛奶和面包,则该交易包含了牛奶的概率为0.6。

Apriori算法的基本思想是:从单个项开始,生成候选项集,并计算它们的支持度。然后,使用支持度阈值来筛选出频繁项集。接下来,使用频繁项集来生

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值