23 | 推荐候选池的去重策略

本文介绍了推荐系统中两个关键的去重需求:内容源去重和避免重复推荐。重点讲解了Simhash算法,利用哈希和加权向量处理长文本内容重复,以及Bloomfilter算法,利用哈希函数和二进制向量实现快速模式串去重,尽管存在误判风险,但能大幅提升效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天依然要讲到两个问题,它们看似和推荐系统没有必然关系,但实际上,在你构建自己的推荐系统的时候,不可避免地会遇到这两个问题。

去重是刚需

在推荐系统中,有一个刚需就是去重,那么说在哪些地方有去重的需求呢?

主要是在两个地方:一个是内容源去重,另一个是不重复给用户推荐。

先说说内容源的去重,这部分以前几年的图文信息流推荐为典型的例子。

如果一个平台自己不生产内容,只是做内容搬运和聚合分发,那么从大量第三方的内容生产处抓取内容,就难免遇到相似甚至重复的内容。这就需要对内容做一个重复检测了。

对内容做重复检测,直观的思路是分词,然后提取关键词,再两两计算词向量之间的距离,距离小于一定阈值后就判定为重复。然而,这对于海量内容,比如几千万以上的内容来说简直就是灾难。

其实,内容源去重并不是仅在推荐系统中才首次出现,这早在搜索引擎时代就是一个刚需了,搜索引擎把整个互联网的网页都下载到自己的服务器上,这时,重复冗余的内容就需要被检测出来。

另一个需求是在内容阅读类推荐场景下,给用户推荐的内容不要重复,推荐过的内容就不再出现在推荐候选集中。

在你刷一个信息流产品时,不断看到重复的内容,想必不是使用感很好的一件事。因为以抓取作为主要内容来源的信息流产品,不同于社交网站上用户自发产生内容,除非遇到用户恶意发送,否则后者是不容易重复的。

以上两个场景,需要在你打造自己的推荐系统时予以考虑和应对。今天就介绍两种最常见的去重算法,两者有相通之处也有不同的之处,听我慢慢说来。

Simhash

内容重复检测,是搜索引擎公司最先遇到的,所以 Google 在 07 年公开了他们内部的内容重复检测算法,这个算法简单有效,甚至造福了今天的信息流推荐产品。

对于很长的内容,如果只是检测绝对重复,也就是说完全一模一样的那种情况,那么使用 MD5 这样的信息指纹方法非常高效,无需再去分词、提取关键词和计算关键词向量之间的距离。

我们直接将原始的内容映射为一个短字符串,这个短字符串就是原始内容的指纹,虽然不是绝对保证和原始内容一一映射,但是不同内容能得到相同指纹的概率非常小。

只是这种信息指纹的方法有个非常明显的坏处就是,哪怕原始内容改一个字,得到的信息指纹就会截然不同。

这就没法愉快地玩耍了,你一定希望的是只要主要内容不变,就算一些不太重要的词句不同,也仍然可以得到相近甚至相同的指纹。这才能更加灵活地进行内容重复检测。是否有这样的算法?有,就是 Simhash。

Simhash 核心思想也是为每个内容生成一个整数表示的指纹,然后用这个指纹去做重复或者相似的检测。下面这个示意图说明了 Simhash 如何把一个原始内容表示成一个整数指纹。

好,现在详细说明一下这个过程。

1. 首先,对原始内容分词,并且计算每个词的权重;

2. 对每个词哈希成一个整数,并且把这个整数对应的二进制序列中的 0 变成 -1,1 还是 1,得到一个 1 和 -1 组成的向量;

3. 把每个词哈希后的向量乘以词的权重,得到一个新的加权向量;

4. 把每个词的加权向量相加,得到一个最终向量,这个向量中每个元素有正有负;

5. 把最终这个向量中元素为正的替换成 1,为负的替换成 0,这个向量变成一个二进制位序列,也就是最终变成了一个整数。

最终这个整数就代表了原始的内容。这个 Simhash 奇妙在哪呢?

看这个示意图中,故意加了一个不太重要的词“了”,它的权重是 1,对应的加权向量元素不是 1 就是 -1,在上述的第四步中,如果这个词对应的向量缺少了,其实根本不影响最终得到那个整数,因为它很难改变最终向量元素的正负。这就是为什么那些不太重要的词不影响内容之间的重复检测。

Simhash 为每一个内容生成一个整数指纹,其中的关键是把每个词哈希成一个整数,这一步常常采用 Jenkins 算法。这里简单示意的整数只有 8 个二进制位,实际上可能需要 64 个二进制位的整数,甚至范围更大。

得到每个内容的 Simhash 指纹后,可以两两计算汉明距离,比较二进制位不同个数,其实就是计算两个指纹的异或,异或结果中如果包含 3 个以下的 1,则认为两条内容重复。

为了高效,也可以直接认为指纹相同才重复,视情况而定。

Bloomfilter

除了内容重复检测,还有一个需求是防止已经推荐的内容被重复推荐。这个刚需和上述内容重复相比,最大的不同就是过滤对象不同,上述 Simhash 过滤对象是内容本身,而这里则一般是内容的 ID。

内容的 ID 一般是用一个 UUID 表示,是一个不太长的字符串或者整数。

对于这类形如模式串的去重,显然可以用单独专门的数据库来保存,为了高效,甚至可以为它建上索引。

但对于用户量巨大的情况下,这个做法对存储的消耗则不可小看。实际上,解决这类看一个字符串在不在一个集合中的问题,有一个有点老但很好用的做法,就是 Bloomfilter,有时候也被称为布隆过滤器。

布隆过滤器的原理也要用到哈希函数。它包含两部分:一个很长的二进制位向量,和一系列哈希函数。Bloomfilter 是一个很巧妙的设计,它先把原始要查询的集合映射到一个长度为 m 的二进制位向量上去,它映射的方法是:

1. 设计 n 个互相独立的哈希函数,准备一个长度为 m 的二进制向量,最开始全是 0;

2. 每个哈希函数把集合内的元素映射为一个不超过 m 的正整数 k,m 就是二进制向量的长度;

3. 把这个二进制向量中的第 k 个位置设置为 1;也就是一个元素会在二进制向量中对应 n 个位置为 1。

放了一个示意图。

这个示意图中,原始的模式串经过三个互相独立的哈希函数,映射到 8 位二进制向量中的三个位置了。

原始的模式串集合经过这样的处理后,就得到一个很大的二进制向量。在应用阶段时,假如来了一个模式串 s,需要查询是否在这个集合中,也需要经过同样的上述步骤。

每个哈希函数对这个模式串 s 哈希后都得到一个整数,看看这个整数在二进制向量中所指示的位置是不是 1,如果每个哈希函数所指示的位置都是 1,就说明模式串 s 已经在集合中了。

需要说明的是,Bloomfilter 也并不是百分之百保证的,有很小的概率把原本不存在集合中的模式串判断为存在。这样就会造成那些明明还没有推荐给用户的内容 ID 就再也不会推荐给用户了,当然,这个小概率是可以承受的。

总结

今天介绍了两种去重算法。在推荐系统中,虽然我们十分关心推荐匹配的效果,但是别忘了,对原始内容的挖掘和清洗往往更加重要。这其中就包括对重复内容的检测。

两种去重策略都是牺牲一点误伤的概率换得大幅度的效率提升,具体的做法都是要借助哈希函数。只是哈希函数的结果在两个算法中有不同的处理手段,Simhash 是加权,Bloomfilter 则是用来做寻址。

<think>好的,我现在要回答用户关于Top1策略在机器学习或数据处理中的应用的问题。首先,我需要明确Top1策略的定义,可能是指分类任务中选择概率最高的类别,或者数据处理中选择某个最优项的方法。 接下来,我需要回忆相关的知识。在机器学习中,Top-1准确率是常见的评估指标,指模型预测的最高概率类别是否正确。这可能与用户的问题相关。另外,在数据处理中,Top1可能涉及数据采样、特征选择或结果筛选,比如在推荐系统中选择得分最高的项目。 然后,我要考虑如何将这些信息组织起来。首先解释Top1策略的基本概念,再分点说明在机器学习和数据处理中的具体应用,每个部分给出例子,并引用相关的参考文献。例如,在模型评估部分引用[^1]和[^2],在数据倾斜处理部分引用[^3],在梯度问题中引用[^4]。 需要确保使用正确的LaTeX格式,比如行内公式用$...$,独立公式用$$...$$。例如,在解释交叉熵损失时,使用$$H(y, \hat{y}) = -\sum y_i \log(\hat{y}_i)$$这样的格式。 还要检查是否有遗漏的应用场景,比如强化学习中的动作选择,或者数据聚合时选择最大值的操作。同时,注意用户可能混淆Top1策略与其他Top-K策略,需要适当区分。 最后,生成相关问题,确保问题与Top1策略相关,并覆盖不同方面,如优化方法、比较分析、挑战和应用场景。同时,引用标记要正确添加,例如在提到数据倾斜时引用,在模型训练困难时引用[^4]。 总结回答结构:定义、机器学习应用(模型评估、损失函数、推理优化)、数据处理应用(数据采样、结果筛选、数据聚合)、总结,然后相关问题。确保每个引用自然出现在相关内容的末尾。</think>### Top1策略在机器学习与数据处理中的应用 Top1策略通常指在分类或决策场景中,**选择概率最高或得分最优的单一结果**。以下是其核心应用场景及实现方法: --- #### 一、机器学习中的Top1策略 1. **模型评估:Top-1准确率** 在分类任务中,Top1准确率是最常用的指标,表示模型预测的最高概率类别是否与真实标签一致。例如: $$ \text{Top1 Accuracy} = \frac{\text{正确预测的样本数}}{\text{总样本数}} $$ 这一指标直接反映模型在单标签分类中的性能。 2. **损失函数设计** 交叉熵损失函数(Cross-Entropy Loss)隐式地要求模型对正确类别输出最高概率,与Top1策略目标一致: $$ H(y, \hat{y}) = -\sum_{i=1}^n y_i \log(\hat{y}_i) $$ 其中$\hat{y}_i$为预测概率,$y_i$为真实标签的独热编码。 3. **推理优化** 在模型推理阶段,Top1策略用于快速筛选预测结果。例如,自然语言处理(NLP)中,解码器可能直接选择概率最高的词生成文本,而非保留多个候选(如Beam Search)。 --- #### 二、数据处理中的Top1策略 1. **数据采样与过滤** 在数据预处理时,可能通过规则筛选出关键样本(如异常检测中选择偏离度最高的数据点),或时保留最新/最完整的记录。 2. **结果筛选与推荐系统** 推荐系统中,Top1策略用于从候选中选择得分最高的物品推送给用户。例如,协同过滤算法中预测用户评分最高的商品。 3. **数据聚合与键值操作** 在分布式计算(如Spark)中,对相同Key的数据进行聚合时,可能直接取最大值(Top1)而非保留全部记录,以减少数据倾斜风险。 --- #### 三、Top1策略的局限性 - **灵活性不足**:忽略次优结果可能影响后续决策(如推荐系统的多样性)。 - **抗噪能力弱**:若模型置信度不高,Top1结果可能错误。 - **数据倾斜风险**:在数据处理中过度依赖Top1可能导致热点问题。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值