17 | 高性能架构案例:如何设计一个秒杀系统?

本文讲述了1号店在大促活动中遇到的高并发秒杀挑战,通过异步处理和Redis队列技术优化系统,实现流量削峰和用户体验的提升,同时讨论了系统改造的轻量化方法和适用场景局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在上一讲中详细介绍了打造一个高性能系统的应对策略和架构手段。那么今天,就以 1 号店的秒杀系统为例,来具体说明如何实现一个高性能的系统。

背景和问题

先说下背景。在 2014 年的时候,1 号店作为网上超市类电商,经常在线上举行各种大促活动。比如进口牛奶促销活动,每次促销的牛奶有几十万盒,促销价格非常优惠,一般这样的促销活动会在某个整点的时间进行开卖(如上午 10 点)。对于这种质高价优并且是刚需的商品,会有大量的用户来抢购,俗话说“手快有,手慢无”,往往短短几分钟内,所有牛奶就能售卖完毕。

这本质上是一种秒杀活动,但商品数量非常大,一瞬间会有大量的用户流量涌入,流量可以高达平时的几十倍。而且和少量商品的秒杀不同,这些都是有效流量,最终会生成订单。

而在正常情况下,系统因为资源有限,只能处理 10% 的流量,无法处理剩下的 90% 流量,瞬间高并发的流量涌入,很大程度上会引起后台系统超时报错,导致用户下单不成功。这样一来,用户就会反复刷新页面,多次尝试下单,不但用户的体验不好,而且系统的压力会更大。

最终的结果就是,系统往往由于过载,整体处理能力下降,甚至瘫痪,导致所有用户都无法购买。就像下图表示的一样,在秒杀场景下,系统会面临这样的困境:

在这种情况下,对于用户来说,能不能买到商品,拼的是体力和人品,由于体验不好,用户会逐渐对活动失去兴趣;而对于系统来说,我们需要拼命地加机器来满足峰值流量。

每次 1 号店要进行大促的时候,在活动开始前,运营和技术人员会坐在一起,大家一起来预估活动的峰值流量,然后技术人员做评估,系统的哪些节点需要加机器,以及要加多少机器。但这样的做法其实存在几个问题:

首先,我们对峰值流量的预估以及要加多少机器都是拍脑袋的,和实际出入往往很大,一旦估计少了,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值