今天,我们来聊一聊内存管理的问题。
不知道你有没有发现,在高并发、高吞吐量的极限情况下,简单的事情就会变得没有那么简单了。一个业务逻辑非常简单的微服务,日常情况下都能稳定运行,为什么一到大促就卡死甚至进程挂掉?再比如,一个做数据汇总的应用,按照小时、天这样的粒度进行数据汇总都没问题,到年底需要汇总全年数据的时候,没等数据汇总出来,程序就死掉了。
之所以出现这些情况,大部分的原因是,程序在设计的时候,没有针对高并发高吞吐量的情况做好内存管理。要想解决这类问题,首先你要了解内存管理机制。
现代的编程语言,像 Java、Go 语言等,采用的都是自动内存管理机制。我们在编写代码的时候,不需要显式去申请和释放内存。当我们创建一个新对象的时候,系统会自动分配一块内存用于存放新创建的对象,对象使用完毕后,系统会自动择机收回这块内存,完全不需要开发者干预。
对于开发者来说,这种自动内存管理的机制,显然是非常方便的,不仅极大降低了开发难度,提升了开发效率,更重要的是,它完美地解决了内存泄漏的问题。是不是很厉害?当年,Java 语言能够迅速普及和流行,超越 C 和 C++,自动内存管理机制是非常重要的一个因素。但是它也会带来一些问题,什么问题呢?这就要从它的实现原理中来分析。
自动内存管理机制的实现原理
做内存管理,主要需要考虑申请内存和内存回收这两个部分。
申请内存的逻辑非常简单:
1. 计算要创建对象所需要占用的内存大小;
2. 在内存中找一块儿连续并且是空闲的内存空间,标记为已占用;
3. 把申请的内存地址绑定到对象的引用上,这时候对象就可以使用了。
内存回收的过程就非常复杂了,总体上,内存回收需要做这样两件事儿:先是要找出所有可以回收的对象,将对应的内存标记为空闲,然后,还需要整理内存碎片。
如何找出可以回收的对象呢?现代的 GC 算法大多采用的是“标记 - 清除”算法或是它的变种算法,这种算法分为标记和清除两个阶段:
标记阶段:从 GC Root 开始,你可以简单地把 GC Root 理解为程序入口的那个对象,标记所有可达的对象,因为程序中所有在用的对象一定都会被这个 GC Root 对象直接或者间接引用。
清除阶段:遍历所有对象,找出所有没有标记的对象。这些没有标记的对象都是可以被回收的,清除这些对象,释放对应的内存即可。
这个算法有一个最大问题就是,在执行标记和清除过程中,必须把进程暂停,否则计算的结果就是不准确的。这也就是为什么发生垃圾回收的时候,我们的程序会卡死的原因。后续产生了许多变种的算法,这些算法更加复杂,可以减少一些进程暂停的时间,但都不能完全避免暂停进程。
完成对象回收后,还需要整理内存碎片。什么是内存碎片呢?举个例子就明白了。
假设,我们的内存只有 10 个字节,一开始这 10 个字节都是空闲的。我们初始化了 5 个 Short 类型的对象,每个 Short 占 2 个字节,正好占满 10 个字节的内存空间。程序运行一段时间后,其中的 2 个 Short 对象用完并被回收了。这时候,如果我需要创建一个占 4 个字节的 Int 对象,是否可以创建成功呢?
答案是,不一定。我们刚刚回收了 2 个 Short,正好是 4 个字节,但是,创建一个 Int 对象需要连续 4 个字节的内存空间,2 段 2 个字节的内存,并不一定就等于一段连续的 4 字节内存。如果这两段 2 字节的空闲内存不连续,我们就无法创建 Int 对象,这就是内存碎片问题。
所以,垃圾回收完成后,还需要进行内存碎片整理,将不连续的空闲内存移动到一起,以便空出足够的连续内存空间供后续使用。和垃圾回收算法一样,内存碎片整理也有很多非常复杂的实现方法,但由于整理过程中需要移动内存中的数据,也都不可避免地需要暂停进程。
虽然自动内存管理机制有效地解决了内存泄漏问题,带来的代价是执行垃圾回收时会暂停进程,如果暂停的时间过长,程序看起来就像“卡死了”一样。
为什么在高并发下程序会卡死?
在理解了自动内存管理的基本原理后,再分析一下,为什么在高并发场景下,这种自动内存管理的机制会更容易触发进程暂停。
一般来说,我们的微服务在收到一个请求后,执行一段业务逻辑,然后返回响应。这个过程中,会创建一些对象,比如说请求对象、响应对象和处理中间业务逻辑中需要使用的一些对象等等。随着这个请求响应的处理流程结束,我们创建的这些对象也就都没有用了,它们将会在下一次垃圾回收过程中被释放。
需要注意的是,直到下一次垃圾回收之前,这些已经没有用的对象会一直占用内存。
那么,虚拟机是如何决定什么时候来执行垃圾回收呢?这里面的策略非常复杂,也有很多不同的实现,我们不展开来讲,但是无论是什么策略,如果内存不够用了,那肯定要执行一次垃圾回收的,否则程序就没法继续运行了。
在低并发情况下,单位时间内需要处理的请求不多,创建的对象数量不会很多,自动垃圾回收机制可以很好地发挥作用,它可以选择在系统不太忙的时候来执行垃圾回收,每次垃圾回收的对象数量也不多,相应的,程序暂停的时间非常短,短到我们都无法感知到这个暂停。这是一个良性的循环。
在高并发的情况下,一切都变得不一样了。
我们的程序会非常繁忙,短时间内就会创建大量的对象,这些对象将会迅速占满内存,这时候,由于没有内存可以使用了,垃圾回收被迫开始启动,并且,这次被迫执行的垃圾回收面临的是占满整个内存的海量对象,它执行的时间也会比较长,相应的,这个回收过程会导致进程长时间暂停。
进程长时间暂停,又会导致大量的请求积压等待处理,垃圾回收刚刚结束,更多的请求立刻涌进来,迅速占满内存,再次被迫执行垃圾回收,进入了一个恶性循环。如果垃圾回收的速度跟不上创建对象的速度,还可能会产生内存溢出的现象。
于是,就出现了在这节开始提到的那个情况:一到大促,大量请求过来,我们的服务就卡死了。
高并发下的内存管理技巧
对于开发者来说,垃圾回收是不可控的,而且是无法避免的。但是,我们还是可以通过一些方法来降低垃圾回收的频率,减少进程暂停的时长。
我们知道,只有使用过被丢弃的对象才是垃圾回收的目标,所以,我们需要想办法在处理大量请求的同时,尽量少的产生这种一次性对象。
最有效的方法就是,优化你的代码中处理请求的业务逻辑,尽量少的创建一次性对象,特别是占用内存较大的对象。比如说,我们可以把收到请求的 Request 对象在业务流程中一直传递下去,而不是每执行一个步骤,就创建一个内容和 Request 对象差不多的新对象。这里面没有多少通用的优化方法,你需要根据我告诉你的这个原则,针对你的业务逻辑来想办法进行优化。
对于需要频繁使用,占用内存较大的一次性对象,我们可以考虑自行回收并重用这些对象。实现的方法是这样的:我们可以为这些对象建立一个对象池。收到请求后,在对象池内申请一个对象,使用完后再放回到对象池中,这样就可以反复地重用这些对象,非常有效地避免频繁触发垃圾回收。
如果可能的话,使用更大内存的服务器,也可以非常有效地缓解这个问题。
以上这些方法,都可以在一定程度上缓解由于垃圾回收导致的进程暂停,如果你优化的好,是可以达到一个还不错的效果的。
当然,要从根本上来解决这个问题,办法只有一个,那就是绕开自动垃圾回收机制,自己来实现内存管理。但是,自行管理内存将会带来非常多的问题,比如说极大增加了程序的复杂度,可能会引起内存泄漏等等。
流计算平台 Flink,就是自行实现了一套内存管理机制,一定程度上缓解了处理大量数据时垃圾回收的问题,但是也带来了一些问题和 Bug,总体看来,效果并不是特别好。因此,一般情况下我并不推荐你这样做,具体还是要根据你的应用情况,综合权衡做出一个相对最优的选择。
小结
现代的编程语言,大多采用自动内存管理机制,虚拟机会不定期执行垃圾回收,自动释放我们不再使用的内存,但是执行垃圾回收的过程会导致进程暂停。
在高并发的场景下,会产生大量的待回收的对象,需要频繁地执行垃圾回收,导致程序长时间暂停,我们的程序看起来就像卡死了一样。为了缓解这个问题,我们需要尽量少地使用一次性对象,对于需要频繁使用,占用内存较大的一次性对象,我们可以考虑自行回收并重用这些对象,来减轻垃圾回收的压力。
思考题
如果我们的微服务的需求是处理大量的文本,比如说,每次请求会传入一个 10KB 左右的文本,在高并发的情况下,你会如何来优化这个程序,来尽量避免由于垃圾回收导致的进程卡死问题?