“田忌赛马”的故事我想你肯定听过吧?田忌是齐国有名的将领,他常常和齐王赛马,可是总是败下阵来,心中非常不悦。孙膑想帮田忌一把。他把这些马分为上、中、下三等。他让田忌用自己的下等马来应战齐王的上等马,用上等马应战齐王的中等马,用中等马应战齐王的下等马。三场比赛结束后,田忌只输了第一场,赢了后面两场,最终赢得与齐王的整场比赛。
孙膑每次都从田忌的马匹中挑选出一匹,一共进行三次,排列出战的顺序。是不是感觉这个过程很熟悉?这其实就是数学中的排列过程。
我们初高中的时候,都学过排列,它的概念是这么说的:从 n 个不同的元素中取出 m(1≤m≤n)个不同的元素,按照一定的顺序排成一列,这个过程就叫排列(Permutation)。当 m=n 这种特殊情况出现的时候,比如说,在田忌赛马的故事中,田忌的三匹马必须全部出战,这就是全排列(All Permutation)。
如果选择出的这 m 个元素可以有重复的,这样的排列就是为重复排列(Permutation with Repetition),否则就是不重复排列(Permutation without Repetition)。
看出来没有?这其实是一个树状结构。从树的根结点到叶子结点,每种路径都是一种排列。有多少个叶子结点就有多少种全排列。从图中我们可以看出,最终叶子结点的数量是 3x2x1=6,所以最终排列的数量为 6。
{上等,中等,下等}
{上等,下等,中等}
{中等,上等,下等}
{中等,下等,上等}
{下等,上等,中等}
{下等,中等,上等}
我用 t1,t2 和 t3 分别表示田忌的上、中、下等马跑完全程所需的时间,用 q1,q2 和 q3 分别表示齐王的上、中、下等马跑全程所需的时间,因此,q1<t1<q2<t2<q3<t3。
如果你将这些可能的排列,仔细地和齐王的上等、中等和下等马进行对比,只有{下等,上等,中等}这一种可能战胜齐王,也就是 t3>q1,t1<q2,t2<q3。
对于最终排列的数量,这里我再推广一下:对于 n 个元素的全排列,所有可能的排列数量就是 nx(n-1)x(n-2)x…x2x1,也就是 n!;
对于 n 个元素里取出 m(0<m<=n)个元素的不重复排列数量是 nx(n-1)x(n-2)x…x(n - m + 1),也就是 n!/(n-m)!。
这两点都是可以用数学归纳法证明的,有兴趣的话你可以自己尝试一下。
如何让计算机为田忌安排赛马?
我们刚才讨论了 3 匹马的情况,这倒还好。可是