21 | 概率基础(下):联合概率、条件概率和贝叶斯法则,这些概率公式究竟能做什么?

本文通过实例解析了联合概率、条件概率和贝叶斯定理的概念,强调了它们在描述复杂现象和解决问题中的作用,尤其在统计学和机器学习中的应用,如朴素贝叶斯算法。通过班级成绩分布探讨了随机变量的独立性及其对简化计算的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一节介绍了随机现象、随机变量以及概率分布这些比较简单的概念。为什么要学习这些概念呢?其实就是为了更精确地描述我们生活中的现象,用数学的视角看世界,以此解决其中的问题。

但是实际生活中的现象并非都像“投硬币”那样简单,有很多影响因素都会影响我们去描述这些现象。比如,看似很简单的“投硬币”,我们其实只是考虑最主要的情况,粗暴地把硬币出现的情况一分为二。比如说,不同类型的硬币是否会影响正反面的概率分布呢?站立的情况如何考虑呢?再比如说,在汽车速度的例子中,经过的交通路线,不同的路线是否会影响速度的概率分布呢?

一旦影响因素变多了,我们需要考虑的问题就多了。想要解决刚才那几个问题,更精确地描述这些现象,我们就需要理解几个新的概念,联合概率、条件概率以及贝叶斯法则。

从数学的角度来说,这些概念能描述现实世界中更为复杂的现象,建立更精细的数学模型。比如,我们后面要讲的朴素贝叶斯算法就是建立在联合概率、条件概率和边缘概率之上的。所以,这一节的内容也非常重要,你一定要认真学习并且掌握。

联合概率、条件概率和边缘概率

最近,一直在教育问题,所以一直在研究他班级的成绩单。为了弄清班级上的成绩排名,向老师要了张全班成绩的分布表。

这张表中有两个随机变量,一个是学生的性别,一个是分数区间。我们很容易就可以得出,这个班中男生的概率是 P(男生)=10/20=50%,90 分及以上的学生的概率是 P(90-100)=4/20=20%。那全班考了 90 分以上的男生的概率是多少呢?我们只要找到 90 分以上的男生人数,用这个人数除以全班总人数就行了,也就是 P(男生, 90-100)=2/20=10%。

你有没有发现,“90 分以上的男生”这个概率和之前单独求男生的概率或 90 分以上的概率不一样。之前只有一个决定因素,现在这个概率由性别和分数这两个随机变量同时决定。这种由多个随机变量决定的概率我们就叫联合概率,它的概率分布就是联合概率分布。随机变量 x 和 y 的联合概率使用 P(x, y) 表示。算出了这个例子里所有的联合概率分布。

这里的例子只有两个随机变量,但是我们可以很容易扩展到更多的随机变量,比如再增加一个学科的变量。那么,我们就可以观测这样的数据:“班级上女生的数学考了 90 分及以上的概率是多少?”,其中女生是关于性别变量,数学是关于学科变量,而 90 分及以上是关于分数变量。

那么联合概率和单个随机变量的概率之间有什么关联呢?

对于离散型随机变量,我们可以通过联合概率 P(x, y) 在 y 上求和,就可以得到 P(x)。对于连续型随机变量,我们可以通过联合概率 P(x, y) 在 y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值