17 | First和Follow集合:用LL算法推演一个实例

在前面的课程中,讲了递归下降算法。这个算法很常用,但会有回溯的现象,在性能上会有损失。所以我们要把算法升级一下,实现带有预测能力的自顶向下分析算法,避免回溯。而要做到这一点,就需要对自顶向下算法有更全面的了解。

另外,有几个同学问到了一些问题,涉及到对一些基本知识点的理解,比如:

基于某个语法规则做解析的时候,什么情况下算是成功,什么情况下算是失败?

使用深度优先的递归下降算法时,会跟广度优先的思路搞混。

要搞清这些问题,也需要全面了解自顶向下算法。比如,了解 Follow 集合和 $ 符号的用法,能帮你解决第一个问题;了解广度优先算法能帮你解决第二个问题。

所以,本节先把自顶向下分析的算法体系梳理一下,让你先建立更加清晰的全景图,然后我再深入剖析 LL 算法的原理,讲清楚 First 集合与 Follow 集合这对核心概念,最终让你把自顶向下的算法体系吃透。

自顶向下分析算法概述

自顶向下分析的算法是一大类算法。总体来说,它是从一个非终结符出发,逐步推导出跟被解析的程序相同的 Token 串。

这个过程可以看做是一张图的搜索过程,这张图非常大,因为针对每一次推导,都可能产生一个新节点。下面这张图只是它的一个小角落。

算法的任务,就是在大图中,找到一条路径,能产生某个句子(Token 串)。比如,我们找到了三条橘色的路径,都能产生“2+3*5”这个表达式。

根据搜索的策略,有深度优先(Depth First)和广度优先(Breadth First)两种,这两种策略的推导过程是不同的。

深度优先是沿着一条分支把所有可能性探索完。以“add->mul+add”产生式为例,它会先把 mul 这个非终结符展开,比如替换成 pri,然后再把它的第一个非终结符 pri 展开。只有把这条分支都向下展开之后,才会回到上一级节点,去展开它的兄弟节点。

递归下降算法就是深度优先的,这也是它不能处理左递归的原因,因为左边的分支永远也不能展开完毕。

而针对“add->add+mul”这个产生式,广度优先会把 add 和 mul 这两个都先展开,这样就形成了四条搜索路径,分别是 mul+mul、add+mul+mul、add+pri 和 add+mul*pri。接着,把它们的每个非终结符再一次展开,会形成 18 条新的搜索路径。

所以,广度优先遍历,需要探索的路径数量会迅速爆炸,成指数级上升。哪怕用下面这个最简单的语法,去匹配“2+3”表达式,都需要尝试 20 多次,更别提针对更复杂的表达式或者采用更加复杂的语法规则了。

//一个很简单的语法
add -> pri          //1
add -> add + pri    //2
pri -> Int          //3
pri -> (add)        //4

这样看来,指数级上升的内存消耗和计算量,使得广度优先根本没有实用价值。虽然上面的算法有优化空间,但无法从根本上降低算法复杂度。当然了,它也有可以使用左递归文法的优点,不过我们不会为了这个优点去忍受算法的性能。

而深度优先算法在内存占用上是线性增长的。考虑到回溯的情况,在最坏的情况下,它的计算量也会指数式增长,但我们可以通过优化,让复杂度降为线性增长。

了解广度优先算法,你的思路会得到拓展,对自顶向下算法的本质有更全面的理解。另外,在写算法时,你也不会一会儿用深度优先,一会儿用广度优先了。

针对深度优先算法的优化方向是减少甚至避免回溯,思路就是给算法加上预测能力。比如,我在解析 statement 的时候,看到一个 if,就知道肯定这是一个条件语句,不用再去尝试其他产生式了。

LL 算法就属于这类预测性的算法。第一个 L,是 Left-to-right,代表从左向右处理程序代码。第二个 L,是 Leftmost,意思是最左推导。

按照语法规则,一个非终结符展开后,会形成多个子节点,其中包含终结符和非终结符。最左推导是指,从左到右依次推导展开这些非终结符。采用 Leftmost 的方法,在推导过程中,句子的左边逐步都会被替换成终结符,只有右边的才可能包含非终结符。

以“2+3*5”为例,它的推导顺序从左到右,非终结符逐步替换成了终结符:

下图是上述推导过程建立起来的 AST,“1、2、3……”等编号是 AST 节点创建的顺序:

好了,我们把自顶向下分析算法做了总体概述,并讲清楚了最左推导的含义,现在来看看 LL 算法到底是怎么回事。

计算和使用 First 集合

LL 算法是带有预测能力的自顶向下算法。在推导的时候,我们希望当存在多个候选的产生式时,瞄一眼下一个(或多个)Token,就知道采用哪个产生式。如果只需要预看一个 Token,就是 LL(1) 算法。

拿 statement 的语法举例子,它有好几个产生式,分别产生 if 语句、while 语句、switch 语句……

statement
    : block
    | IF parExpression statement (ELSE statement)?
    | FOR '(' forControl ')' statement
    | WHILE parExpression statement
    | DO statement WHILE parExpression ';'
    | SWITCH parExpression '{' switchBlockStatementGroup* switchLabel*                
    | RETURN expression? ';'
    | BREAK IDENTIFIER? ';'
    | CONTINUE IDENTIFIER? ';'
    | SEMI
    | statementExpression=expression ';'
    | identifierLabel=IDENTIFIER ':' statement
    ;

如果我看到下一个 Token 是 if,那么后面跟着的肯定是 if 语句,这样就实现了预测,不需要一个一个产生式去试。

问题来了,if 语句的产生式的第一个元素就是一个终结符,这自然很好判断,可如果是一个非终结符,比如表达式语句,那该怎么判断呢?

我们可以为 statement 的每条分支计算一个集合,集合包含了这条分支所有可能的起始 Token。如果每条分支的起始 Token 是不一样的,也就是这些集合的交集是空集,那么就很容易根据这个集合来判断该选择哪个产生式。我们把这样的集合,就叫做这个产生式的 First 集合

First 集合的计算很直观,假设我们要计算的产生式是 x:

如果 x 以 Token 开头,那么 First(x) 包含的元素就是这个 Token,比如 if 语句的 First 集合就是{IF}。

如果 x 的开头是非终结符 a,那么 First(x) 要包含 First(a) 的所有成员。比如 expressionStatment 是以 expression 开头,因此它的 First 集合要包含 First(expression) 的全体成员。

如果 x 的第一个元素 a 能够产生ε,那么还要再往下看一个元素 b,把 First(b) 的成员也加入到 First(x),以此类推。如果所有元素都可能返回ε,那么 First(x) 也应该包含ε,意思是 x 也可能产生ε。比如下面的 blockStatements 产生式,它的第一个元素是 blockStatement*,也就意味着 blockStatement 的数量可能为 0,因此可能产生ε。那么 First(blockStatements) 除了要包含 First(blockStatement) 的全部成员,还要包含后面的“;”。

blockStatements
        : blockStatement*
        ;

最后,如果 x 是一个非终结符,它有多个产生式可供选择,那么 First(x) 应包含所有产生式的 First() 集合的成员。比如 statement 的 First 集合要包含 if、while 等所有产生式的 First 集合的成员。并且,如果这些产生式只要有一个可能产生ε,那么 x 就可能产生ε,因此 First(x) 就应该包含ε。

在本讲的示例程序里,我们可以用SampleGrammar.expressionGrammar()方法获得一个表达式的语法,把它 dump() 一下,这其实是消除了左递归的表达式语法:

expression  : assign ;
assign  : equal | assign1 ;
assign1 : '=' equal assign1 | ε;  
equal  : rel equal1 ;
equal1  : ('==' | '!=') rel equal1 | ε ;
rel    : add rel1 ;
rel1  : ('>=' | '>' | '<=' | '<') add rel1 | ε ;
add    : mul add1 ;
add1  : ('+' | '-') mul add1 | ε ;
mul    : pri mul1 ;
mul1  : ('*' | '/') pri mul1 | ε ;
pri    : ID | INT_LITERAL | LPAREN expression RPAREN ;

我们用 GrammarNode 类代表语法的节点,形成一张语法图(蓝色节点的下属节点之间是“或”的关系,也就是语法中的竖线)。

基于这个数据结构能计算每个非终结符的 First 集合,可以参考LLParser类的 caclFirstSets() 方法。运行示例程序可以打印出表达式语法中各个非终结符的 First 集合。

在计算时你要注意,因为上下文无关文法是允许递归嵌套的,所以这些 GrammarNode 节点构成的是一个图,而不是树,不能通过简单的遍历树的方法来计算 First 集合。比如,pri 节点是 expression 的后代节点,但 pri 又引用了 expression(pri->(expression))。这样,计算 First(expression) 需要用到 First(pri),而计算 First(pri) 又需要依赖 First(expression)。

破解这个僵局的方法是用“不动点法”来计算。多次遍历图中的节点,看看每次有没有计算出新的集合成员。比如,第一遍计算的时候,当求 First(pri) 的时候,它所依赖的 First(expression) 中的成员可能不全,等下一轮继续计算时,发现有新的集合成员,再加进来就好了,直到所有集合的成员都没有变动为止。

现在我们可以用 First 集合进行分支判断了,不过还要处理产生式可能为ε的情况,比如“+mul add1 | ε”或“blockStatement*”都会产生ε。

计算和使用 Follow 集合

对ε的处理分成两种情况。

第一种情况,是产生式中的部分元素会产生ε。比如,在 Java 语法里,声明一个类成员的时候,可能会用 public、private 这些来修饰,但也可以省略不写。在语法规则中,这个部分是“accessModifier?”,它就可能产生ε。

memberDeclaration : accessModifier? type identifier ';' ;
accessModifier : 'public' | 'private' ;
type : 'int' | 'long' | 'double' ;

所以,当我们遇到下面这两个语句的时候,都可以判断为类成员的声明:

public int a;
int b; 

这时,type 能够产生的终结符 ‘int’、‘long’和‘double’也在 memberDeclaration 的 First 集合中。这样,我们实际上把 accessModifier 给穿透了,直接到了下一个非终结符 type。所以这类问题依靠 First 集合仍然能解决。在解析的过程中,如果下一个 Token 是 ‘int’,我们可以认为 accessModifier 返回了ε,忽略它,继续解析下一个元素 type,因为它的 First 集合中才会包含 ‘int’。

第二种情况是产生式本身(而不是其组成部分)产生ε。这类问题仅仅依靠 First 集合是无法解决的,要引入另一个集合:Follow 集合。它是所有可能跟在某个非终结符之后的终结符的集合。

以 block 语句为例,在 PlayScript.g4 中,大致是这样定义的:

block
    : '{' blockStatements '}'
    ;

blockStatements
    : blockStatement*
    ;
    
blockStatement
    : variableDeclarators ';'
    | statement
    | functionDeclaration
    | classDeclaration
    ;

也就是说,block 是由 blockStatements 构成的,而 blockStatements 可以由 0 到 n 个 blockStatement 构成,因此可能产生ε。

接下来,我们来看看解析 block 时会发生什么。

假设花括号中一个语句也没有,也就是 blockStatments 实际上产生了ε。那么在解析 block 时,首先读取了一个 Token,即“{”,然后处理 blockStatements,我们再预读一个 Token,发现是“}”,那这个右花括号是 blockStatement 的哪个产生式的呢?实际上它不在任何一个产生式的 First 集合中,下面是进行判断的伪代码:

nextToken = tokens.peek();                //得到'}'
nextToken in First(variableDeclarators) ? //no
nextToken in First(statement) ?           //no
nextToken in First(functionDeclaration) ? //no
nextToken in First(classDeclaration) ?    //no

我们找不到任何一个可用的产生式。这可怎么办呢?除了可能是 blockStatments 本身产生了ε之外,还有一个可能性就是出现语法错误了。而要继续往下判断,就需要用到 Follow 集合。

像 blockStatements 的 Follow 集合只有一个元素,就是右花括号“}”。所以,我们只要再检查一下 nextToken 是不是花括号就行了:

//伪代码
nextToken = tokens.peek();                //得到'}'
nextToken in First(variableDeclarators) ? //no
nextToken in First(statement) ?           //no
nextToken in First(functionDeclaration) ? //no
nextToken in First(classDeclaration) ?    //no

if (nextToken in Follow(blockStatements)) //检查Follow集合
  return Epsilon;                         //推导出ε
else
  error;                                  //语法错误

那么怎么计算非终结符 x 的 Follow 集合呢?

扫描语法规则,看看 x 后面都可能跟哪些符号。

对于后面跟着的终结符,都加到 Follow(x) 集合中去。

如果后面是非终结符,就把它的 First 集合加到自己的 Follow 集合中去。

最后,如果后面的非终结符可能产出ε,就再往后找,直到找到程序终结符号。

这个符号通常记做 $,意味一个程序的结束。比如在表达式的语法里,expression 后面可能跟这个符号,expression 的所有右侧分支的后代节点也都可能跟这个符号,也就是它们都可能出现在程序的末尾。但另一些非终结符,后面不会跟这个符号,如 blockstatements,因为它后面肯定会有“}”。

你可以参考LLParser类的 caclFollowSets() 方法,这里也要用到不动点法做计算。运行程序可以打印出示例语法的的 Follow 集合。我把程序打印输出的 First 和 follow 集合整理如下(其实打印输出还包含一些中间节点,这里就不展示了):

在表达式的解析中,我们会综合运用 First 和 Follow 集合。比如,对于“add1 -> + mul add1 | ε”,如果预读的下一个 Token 是 +,那就按照第一个产生式处理,因为 + 在 First(“+ mul add1”) 集合中。如果预读的 Token 是 > 号,那它肯定不在 First(add1) 中,而我们要看它是否属于 Follow(add1),如果是,那么 add1 就产生一个ε,否则就报错。

LL 算法和文法

现在我们已经建立了对 First 集合、Follow 集合和 LL 算法计算过程的直觉认知。这样再写出算法的实现,就比较容易了。用 LL 算法解析语法的时候,我们可以选择两种实现方式。

第一种,还是采用递归下降算法,只不过现在的递归下降算法是没有任何回溯的。无论走到哪一步,我们都能准确地预测出应该采用哪个产生式。

第二种,是采用表驱动的方式。这个时候需要基于我们计算出来的 First 和 Follow 集合构造一张预测分析表。根据这个表,查找在遇到什么 Token 的情况下,应该走哪条路径。

这两种方式是等价的,你可以根据自己的喜好来选择,我用的是第一种。关于算法,我们就说这么多,接下来,我们谈谈如何设计符合 LL(k) 特别是 LL(1) 算法的文法。

我们已经知道左递归的文法是要避免的,也知道要如何避免。除此之外,我们要尽量抽取左公因子,这样可以避免 First 集合产生交集。举例来说,变量声明和函数声明的规则在前半截都差不多,都是类型后面跟着标识符:

statement : variableDeclare | functionDeclare | other;
variableDeclare : type Identifier ('=' expression)? ;
funcationDeclare : type Identifier '(' parameterList ')' block ;

具体例子如下:

int age;
int cacl(int a, int b){
  return a + b;
}

这样的语法规则,如果按照 LL(1) 算法,First(variableDeclare) 和 First(funcationDeclare) 是相同的,没法决定走哪条路径。你就算用 LL(2),也是一样的,要用到 LL(3) 才行。但对于 LL(k) k > 1 来说,程序开销有点儿大,因为要计算更多的集合,构造更复杂的预测分析表。

不过这个问题很容易解决,只要把它们的左公因子提出来就可以了:

statement: declarator | other;
declarator : declarePrefix (variableDeclarePostfix                
                            |functionDeclarePostfix) ;
variableDeclarePostfix : ('=' expression)? ;
functionDeclarePostfix : '(' parameterList ')' block ;

这样,解析程序先解析它们的公共部分,即 declarePrefix,然后再看后面的差异。这时,它俩的 First 集合,一个{ = ; },一个是{ ( },两者没有交集,能够很容易区分。

课程小结

本节课我们比较全面地梳理了自顶向下算法。语法解析过程可以看做是对图的遍历过程,遍历时可以采取深度优先或广度优先的策略,这里要注意,你可能在做深度优先遍历的时候,误用广度优先的思路。

针对 LL 算法,我们通过实例分析了 First 集合和 Follow 集合的使用场景和计算方式。掌握了这两个核心概念,特别是熟悉它们的使用场景,你会彻底掌握 LL 算法。

一课一思

处理ε是 LL 算法中的关键点。在你熟悉的语言中,哪些语法会产生ε,你在做语法解析的时候会怎样处理它们?

本节课的示例代码放在了文末,供你参考。

lab/16~18(算法篇的示例代码):码云 GitHub

LLParser.java(LL 算法的语法解析器):码云 GitHub



本文深入探讨了自顶向下分析算法及其在语法解析中的应用。首先介绍了深度优先和广度优先两种搜索策略在递归下降算法中的性能表现,指出了它们在内存占用和计算量上的特点。随后详细解释了LL算法的原理和应用,以及计算和使用First集合和Follow集合的方法。文章还探讨了符合LL(k)特别是LL(1)算法的文法设计,强调了避免左递归和抽取左公因子的重要性。总结时指出,掌握处理ε的关键点对于理解LL算法至关重要。整体而言,本文通过对自顶向下分析算法的概述和LL算法的详细解释,帮助读者更好地理解了这一算法体系的原理和应用。

  • 13
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值