23 | Kafka副本机制详解

本文详细介绍了ApacheKafka的副本机制,包括数据冗余、In-syncReplicas和Unclean领导者选举,阐述了它们如何确保高可用性和数据一致性。社区讨论中提到的Follower副本处理请求的潜在改变也被提及。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天要和你分享的主题是:Apache Kafka 的副本机制。

所谓的副本机制(Replication),也可以称之为备份机制,通常是指分布式系统在多台网络互联的机器上保存有相同的数据拷贝。副本机制有什么好处呢?

1. 提供数据冗余。即使系统部分组件失效,系统依然能够继续运转,因而增加了整体可用性以及数据持久性。

2. 提供高伸缩性。支持横向扩展,能够通过增加机器的方式来提升读性能,进而提高读操作吞吐量。

3. 改善数据局部性。允许将数据放入与用户地理位置相近的地方,从而降低系统延时。

这些优点都是在分布式系统教科书中最常被提及的,但是有些遗憾的是,对于 Apache Kafka 而言,目前只能享受到副本机制带来的第 1 个好处,也就是提供数据冗余实现高可用性和高持久性。我会在这一讲后面的内容中,详细解释 Kafka 没能提供第 2 点和第 3 点好处的原因。

不过即便如此,副本机制依然是 Kafka 设计架构的核心所在,它也是 Kafka 确保系统高可用和消息高持久性的重要基石。

副本定义

在讨论具体的副本机制之前,我们先花一点时间明确一下副本的含义。

我们之前谈到过,Kafka 是有主题概念的,而每个主题又进一步划分成若干个分区。副本的概念实际上是在分区层级下定义的,每个分区配置有若干个副本。

所谓副本(Replica),本质就是一个只能追加写消息的提交日志。根据 Kafka 副本机制的定义,同一个分区下的所有副本保存有相同的消息序列,这些副本分散保存在不同的 Broker 上,从而能够对抗部分 Broker 宕机带来的数据不可用。

在实际生产环境中,每台 Broker 都可能保存有各个主题下不同分区的不同副本,因此,单个 Broker 上存有成百上千个副本的现象是非常正常的。

接下来我们来看一张图,它展示的是一个有 3 台 Broker 的 Kafka 集群上的副本分布情况。从这张图中,我们可以看到,主题 1 分区 0 的 3 个副本分散在 3 台 Broker 上,其他主题分区的副本也都散落在不同的 Broker 上,从而实现数据冗余。

副本角色

既然分区下能够配置多个副本,而且这些副本的内容还要一致,那么很自然的一个问题就是:我们该如何确保副本中所有的数据都是一致的呢?特别是对 Kafka 而言,当生产者发送消息到某个主题后,消息是如何同步到对应的所有副本中的呢?针对这个问题&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值