线性分段方法的难点在于分段点的选取,对于目标与背景灰度值差异明显的,可以采用生成灰度直方图,然后人工选点的方式,也可以采用统计灰度值的算法来自动计算分段点,如下:
当待处理图片目标和背景灰度值的对比度比较低时,线性分段分段点的选取主要采用“最小误差法”【1】选取,。
最小误差法是KITTLER1984年在MINIMUM ERROR THRESHOLDING文章中提出的一种基于直方图的阈值分割方法,简称KITTLER算法。其思想:假设灰度图像由目标和背景组成,且目标和背景满足一混合高斯分布,计算目标和背景的均值、方差,根据最小分类误差思想得到的最小误差目标函数,取目标函数最小时的阈值即为最佳阈值。按此阈值将图像分割为二值图像【2】。
算法过程【3】:



本文介绍了线性分段方法在图像处理中的应用,特别是当目标与背景对比度较低时,如何利用最小误差法(KITTLER算法)选择最佳阈值进行图像分割。该方法基于灰度直方图,通过计算目标和背景的均值与方差,建立最小误差目标函数,并找到使该函数最小的阈值。
最低0.47元/天 解锁文章
1214

被折叠的 条评论
为什么被折叠?



