学渣的刷题之旅 leetcode刷题 53.最大子序和(动态规划,贪心法)

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

我的c++代码

动态规划法

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result=nums[0],number=nums[0];
        for(int i=1;i<nums.size();i++){
            number=max(number+nums[i],nums[i]);
            result=max(number,result);
        }
        return result;
    }
};

记录每一个位置的最大值(从头到这个位置的最大子序和),那么:
每个位置的最大值=max(上个位置的最大值+当前位置值,当前位置值)

动态规划法适用于多阶段决策问题,每个阶段的决策都与 该阶段 、前一阶段的决策有关,要想获得最优决策,那么每一阶段的决策都需要最优。
需要解决的问题有:

  1. 阶段之间决策的关联。
  2. 第一个阶段的最优决策是什么。

贪心法

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result=INT_MIN,sum=0;
        for(int i=0;i<nums.size();i++){
            sum=sum+nums[i];
            result=max(result,sum);
            if(sum<0)
                sum=0;
        }
        return result;
    }
};

贪心算法只考虑局部最优,由局部最优解堆叠出全局最优解。

  1. 明确题目最优解
  2. 明确子问题最优解(可能有多种,策略选择很重要)
  3. 局部到全局
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值