给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
我的c++代码
动态规划法
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int result=nums[0],number=nums[0];
for(int i=1;i<nums.size();i++){
number=max(number+nums[i],nums[i]);
result=max(number,result);
}
return result;
}
};
记录每一个位置的最大值(从头到这个位置的最大子序和),那么:
每个位置的最大值=max(上个位置的最大值+当前位置值,当前位置值)
动态规划法适用于多阶段决策问题,每个阶段的决策都与 该阶段 、前一阶段的决策有关,要想获得最优决策,那么每一阶段的决策都需要最优。
需要解决的问题有:
- 阶段之间决策的关联。
- 第一个阶段的最优决策是什么。
贪心法
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int result=INT_MIN,sum=0;
for(int i=0;i<nums.size();i++){
sum=sum+nums[i];
result=max(result,sum);
if(sum<0)
sum=0;
}
return result;
}
};
贪心算法只考虑局部最优,由局部最优解堆叠出全局最优解。
- 明确题目最优解
- 明确子问题最优解(可能有多种,策略选择很重要)
- 局部到全局