题目链接:点我
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4
0 1
1 1
Sample Output
1 2
2 3
这个题有两种转移矩阵
详细看图:
首先第一种方法,用到矩阵快速幂。
#include<stdio.h>
#include<string.h>
int mod,len,n;
const int ssize=66;
struct Matrix {
int a[ssize][ssize];
Matrix() {
memset(a,0,sizeof(a));
}
void init() {
for(int i=1; i<=len; i++)
for(int j=1; j<=len; j++)
a[i][j]=(i==j);
}
Matrix operator * (const Matrix &B)const {
Matrix C;
for(int i=1; i<=len; i++)
for(int k=1; k<=len; k++)
for(int j=1; j<=len; j++)
C.a[i][j]=(C.a[i][j]+1LL*a[i][k]*B.a[k][j])%mod;
return C;
}
Matrix operator ^ (const int &t)const {
Matrix A=(*this),res;
res.init();
int p=t;
while(p) {
if(p&1)res=res*A;
A=A*A;
p>>=1;
}
return res;
}
};
int main()
{
int i,j,k;
while(scanf("%d%d%d",&n,&k,&mod)!=EOF)
{ len=n*2;
Matrix a,b;
a.init();
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
scanf("%d",&a.a[i][j]);
for(i=1;i<=n;i++)//右上部分
for(j=n+1;j<=n*2;j++)
if(i+n==j)
a.a[i][j]=1;
else
a.a[i][j]=0;
a=a^(k+1);
for(i=1;i<=n;i++)//减去单位矩阵
for(j=n+1;j<=len;j++)
{
if(i+n==j)
a.a[i][j]--;
while(a.a[i][j]<0)//为了防止溢出
a.a[i][j]+=mod;
}
for(i=1;i<=n;i++)
{
for(j=n+1;j<len;j++)
printf("%d ",a.a[i][j]);
printf("%d\n",a.a[i][len]);
}
}
return 0;
}
接下来第二种,用到自己的矩阵快速幂板子会超时
改了下转移矩阵,过了,700ms,说明这个转移矩阵是没问题的,
没想到结构体重载运算符竟然会这么慢
#include<stdio.h>
#include<string.h>
struct node {
int p[65][65];
};
int mod,len;
struct node suan(struct node a,struct node b) { //矩阵a乘以矩阵b
int i,j,k;
struct node c;
for(i=1; i<=len; i++) {
for(j=1; j<=len; j++) {
c.p[i][j]=0;
for(k=1; k<=len; k++)
c.p[i][j]=(a.p[i][k]*b.p[k][j]+c.p[i][j])%mod;
}
}
return c;
}
struct node haha(struct node a,struct node b,int n){
while(n) { //矩阵的快速幂
if(n&1)
b=suan(b,a);
n>>=1;
a=suan(a,a);
}
return b;
}
int main(){
int i,j,n,k;
struct node a,b,origin;
while(scanf("%d%d%d",&n,&k,&mod)!=EOF) {
len=n*2;
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
a.p[i][j]=(i==j);
}
}
for(i=1; i<=n; i++) {
for(j=n+1; j<=(n<<1); j++) {
scanf("%d",&a.p[i][j]);
a.p[i+n][j]=a.p[i][j];
b.p[i][j-n]=a.p[i][j];
b.p[i+n][j-n]=b.p[i][j-n];
}
}
for(i=1; i<=n*2; i++) //把b变成单位矩阵
for(j=1; j<=n*2; j++)
origin.p[i][j]=(i==j);
a=haha(a,origin,k-1);
b=suan(a,b);
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
printf("%d ",b.p[i][j]);
}
printf("\n");
}
}
return 0;
}