poj 3233 Matrix Power Series

题目链接:点我
Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1
Sample Output

1 2
2 3

这个题有两种转移矩阵
详细看图:
这里写图片描述

首先第一种方法,用到矩阵快速幂。

#include<stdio.h>
#include<string.h>
int mod,len,n;
const int ssize=66;
struct Matrix {
	int a[ssize][ssize];
	Matrix() {
		memset(a,0,sizeof(a));
	}
	void init() {
		for(int i=1; i<=len; i++)
			for(int j=1; j<=len; j++)
				a[i][j]=(i==j);
	}
	Matrix operator * (const Matrix &B)const {
		Matrix C;
		for(int i=1; i<=len; i++)
			for(int k=1; k<=len; k++)
				for(int j=1; j<=len; j++)
					C.a[i][j]=(C.a[i][j]+1LL*a[i][k]*B.a[k][j])%mod;
		return C;
	}
	Matrix operator ^ (const int &t)const {
		Matrix A=(*this),res;
		res.init();
		int p=t;
		while(p) {
			if(p&1)res=res*A;
			A=A*A;
			p>>=1;
		}
		return res;
	}
};


int main()
{
    int i,j,k;
    
    while(scanf("%d%d%d",&n,&k,&mod)!=EOF)
    {   len=n*2;
	     Matrix a,b;
        a.init();
        for(i=1;i<=n;i++)
            for(j=1;j<=n;j++)
                scanf("%d",&a.a[i][j]);
        for(i=1;i<=n;i++)//右上部分
            for(j=n+1;j<=n*2;j++)
                if(i+n==j)
                    a.a[i][j]=1;
                else
                    a.a[i][j]=0;
        a=a^(k+1);
        for(i=1;i<=n;i++)//减去单位矩阵
            for(j=n+1;j<=len;j++)
            {
                if(i+n==j)
                    a.a[i][j]--;
                while(a.a[i][j]<0)//为了防止溢出
                    a.a[i][j]+=mod;
            }
        for(i=1;i<=n;i++)
        {
            for(j=n+1;j<len;j++)
                printf("%d ",a.a[i][j]);
            printf("%d\n",a.a[i][len]);
        }
    }
    return 0;
}

接下来第二种,用到自己的矩阵快速幂板子会超时
改了下转移矩阵,过了,700ms,说明这个转移矩阵是没问题的,
没想到结构体重载运算符竟然会这么慢

#include<stdio.h>
#include<string.h>
struct node {
	int p[65][65];
};
int mod,len;
struct node suan(struct node a,struct node b) { //矩阵a乘以矩阵b
	int i,j,k;
	struct node c;
	for(i=1; i<=len; i++) {
		for(j=1; j<=len; j++) {
			c.p[i][j]=0;
			for(k=1; k<=len; k++)
				c.p[i][j]=(a.p[i][k]*b.p[k][j]+c.p[i][j])%mod;
		}
	}
	return c;
}
struct node haha(struct node a,struct node b,int n){
	while(n) { //矩阵的快速幂
		if(n&1)
			b=suan(b,a);
		n>>=1;
		a=suan(a,a);
	}
	return b;
}
int main(){
	int i,j,n,k;
	struct node a,b,origin;
	while(scanf("%d%d%d",&n,&k,&mod)!=EOF) {
		len=n*2;
		for(i=1;i<=n;i++){
			for(j=1;j<=n;j++){
				a.p[i][j]=(i==j);
			}
		}
		for(i=1; i<=n; i++) { 
			for(j=n+1; j<=(n<<1); j++) {
				scanf("%d",&a.p[i][j]);
				a.p[i+n][j]=a.p[i][j];
				b.p[i][j-n]=a.p[i][j];
				b.p[i+n][j-n]=b.p[i][j-n];
			}
		}
		for(i=1; i<=n*2; i++) //把b变成单位矩阵
			for(j=1; j<=n*2; j++)
			     origin.p[i][j]=(i==j);
		a=haha(a,origin,k-1);
		b=suan(a,b);
		for(i=1;i<=n;i++){
			for(j=1;j<=n;j++){
				printf("%d ",b.p[i][j]);
			}
			printf("\n");
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值