TensorFlow2安装(超详细步骤-人工智能实践)

本文档详细记录了如何在Windows环境下使用Anaconda安装TensorFlow2.1,包括创建独立环境、安装CUDA和cuDNN,以及验证安装成功的过程。此外,还介绍了PyCharm的下载与配置,提供了测试代码来检查TensorFlow版本和GPU可用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 前言

点滴进步,加油!
最近在MOOC看北京大学的曹健老师的《人工智能实践:Tensorflow笔记》课程。
其中第一章的第8节提到了详细的TensorFlow安装过程。因为慕课的课程有时限,故记录在此处。

1.1 版本记录

我之前在D:\SoftWare\Anaconda3-2019.10-Windows-x86_64\Scripts路径下安装的TensorFlow2.0版本在这里插入图片描述
按照老师的课程安装了TF2.1环境,路径如下:两者互不干扰在这里插入图片描述

1.2 工具简介

所需软件工具如下:
1、Anaconda:https://anaconda.org/
2、PyCharm:https://www.jetbrains.com/pycharm/

2 详细步骤及安装语句

说明:因我安装好,才想要记录,故以下截图大部分来自课程,少部分来自我的安装截图。

2.1 安装Anaconda

在这里插入图片描述
在这里插入图片描述

2.2 TensoFlow安装

打开Anaconda Prompt在这里插入图片描述
命令行输入:conda create -n TF2.1 python==3.7
在这里插入图片描述在这里插入图片描述
命令行输入:conda activate TF2.1在这里插入图片描述
命令行输入:conda inatall cudatoolkit=10.1在这里插入图片描述
在这里插入图片描述
命令行输入:conda install cudnn=7.6在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
命令行输入:pip install tensorflow==2.1在这里插入图片描述

2.3 验证是否成功

在这里插入图片描述
语句列表及截图如下:
python
import tensorflow as tf
tf._version_
在这里插入图片描述
环境路径在这里插入图片描述

2.4 PyCharm下载与安装

在这里插入图片描述
在这里插入图片描述

2.5 PyCharm环境配置

创建工程
在这里插入图片描述
设置环境变量在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
测试代码`

import tensorflow as tf

tensorflow_version = tf.__version__
gpu_avilable = tf.test.is_gpu_available()

print("tensorflow version: ", tensorflow_version,"\tGPU aviable:", gpu_avilable)

a = tf.constant([1.0,2.0], name = 'a')
b = tf.constant([1.0,2.0], name = 'b')
result = tf.add(a,b,name='add')
print(result)`

在这里插入图片描述

2.5.1 不唐初尝试

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值