一元线性回归

本文详细介绍了线性回归的基本概念,包括一元线性模型y=wx+b,损失函数的选择(均方误差与平方损失函数),以及最小二乘法在求解模型参数中的应用。重点讲解了残差平方和最小化的求解过程,以及损失函数的性质。
摘要由CSDN通过智能技术生成

回归主要用于预测数值型数据,根据观测到的数据,设计一种模型描述数据之间蕴含的关系,回归的典型例子就是通过给定的数据点拟合出最优的曲线。

  • 预测数值型数据
  • 通过数据点拟合出最优的曲线

在这里插入图片描述

在这个例子中面积和房价之间的关系可以近似地表示成一根直线,因此这种模型称为线性回归,在这个模型中,只包含一个自变量x,因此,这种线性回归模型被称为一元线性回归。

一元线性回归 (Simple linear regression)

y = w x + b y = wx + b y=wx+b

模型变量: x
模型参数:

  • w: 权重 (weights)
  • b: 偏置值 (bias)

在这里插入图片描述

在一元线性回归问题中,要解决的问题就是如何根据样本数据确定模型参数wb

在这里插入图片描述

损失函数/代价函数(Loss/cost function)

模型的预测值真实值的不一致程度

  • 残差和最小
    L o s s = ∑ i = 1 n ( y i − y ^ i ) = ∑ i = 1 n ( y i − ( w x i + b ) ) Loss = \sum_{i=1}^{n}{(y_i - \widehat{y}_i)} =\sum_{i=1}^{n}{(y_i - (wx_i + b))} Loss=i=1n(yiy i)=i=1n(yi(wxi+b))

  • 残差绝对值和最小
    L o s s = ∑ i = 1 n ∣ y i − y ^ i ∣ = ∑ i = 1 n ∣ y i − ( w x i + b ) ∣ Loss = \sum_{i=1}^{n}{|y_i - \widehat{y}_i|} =\sum_{i=1}^{n}{|y_i - (wx_i + b)|} Loss=i=1nyiy i=i=1nyi(wxi+b)

  • 残差平方和最小
    L o s s = 1 2 ∑ i = 1 n ( y i − y ^ i ) 2 = 1 2 ∑ i = 1 n ( y i − ( w x i + b ) ) 2 Loss = \frac{1}{2}\sum_{i=1}^{n}{(y_i - \widehat{y}_i)^2} =\frac{1}{2}\sum_{i=1}^{n}{(y_i - (wx_i + b))^2} Loss=21i=1n(yiy i)2=21i=1n(yi(wxi+b))2

这个函数也被称为平方损失函数(Square Loss),函数的系数 1 2 \frac{1}{2} 21是为了方便求导运算。平方损失函数不仅计算方便,而且具有很好的几何意义。其中 ( y i − y ^ i ) 2 (y_i - \widehat{y}_i)^2 (yiy i)2可以代表样本点与估计值的欧氏距离( ( y i − y ^ i ) 2 \sqrt{(y_i - \widehat{y}_i)^2} (yiy i)2 ) 的大小。

在这里插入图片描述

在平方损失函数的基础上除以样本数n,就是均方误差。

  • 均方误差(Mean Squqre Error)
    L o s s = 1 2 n ∑ i = 1 n ( y i − y ^ i ) 2 = 1 2 n ∑ i = 1 n ( y i − ( w x i + b ) ) 2 Loss = \frac{1}{2n}\sum_{i=1}^{n}{(y_i - \widehat{y}_i)^2} =\frac{1}{2n}\sum_{i=1}^{n}{(y_i - (wx_i + b))^2} Loss=2n1i=1n(yiy i)2=2n1i=1n(yi(wxi+b))2

均方误差经常被作为衡量误差的指标。其中基于均方误差最小化来进行模型求解的方法,称为最小二乘法(Least Square Method)。

损失函数的2个性质

  • 非负性: 保证样本误差不会相互抵消
  • 一致性: 损失函数的值和误差变化一致

作为损失函数。首先,它的每一个误差项应该是非负的,这样才能够保证样本误差不会相互抵消。第二,损失函数的结果应该和误差的变化趋势是一致的。但模型输出的估计值 y ^ \widehat{y} y 和样本标签y差距越大时,损失函数的值就应该越大;而当他们越接近时,函数的值就应该越小,并且不断地趋近于零,也就是说应该单调有界,并且收敛于0。


下面给出一个模型求解的过程,以残差平方和最小为例

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值