Cross-Modality Contrastive Learning for Hyperspectral Image Classification

该博客探讨了小样本问题的解决方案,重点介绍了多模态对比学习方法。文章提出两个创新点:使用不同数据类型的分支进行对比学习以及语义和结构信息的迁移。实验部分详细分析了输入尺寸、PCA参数和正则化参数的影响,并通过模型对比和消融研究验证了方法的有效性。结论指出,多模态学习是解决此类问题的一个关键亮点。

对比学习第三篇,多模态对比学习
多模态的对比学习。

I. INTRODUCTION

介绍了解决小样本问题的三种途径:数据增强,迁移学习,非监督学习。
创新点:

  • 多模态对比学习。
  • 语义信息和结构信息迁移。

II. METHODOLOGY

在这里插入图片描述
创新点两个分支不是同一种数据

A. Architecture Overview
B. Unsupervised Feature Learning Framework
C. Feature Fine-Tuning for Hyperspectral Classification
- 比较早期的对比学习,类似SimCLR?
- 添加了结构损失函数提取以结构信息,好像也没有啥创新。(可以进一步细看)

III. EXPERIMENTS

A. Data Description
input size : 11118
Muufl Gulfport (MUUFL) 这个数据集没有用过
Trento dataset 这个数据集也没有用过

B. Hyperparameter Selection

    1. Analysis on s(input size)
    1. Analysis on p(PCA)
  • Analysis on λ(the regularization parameter)
    C. Model Comparison
    D. Ablation Study
    E. Effects of Training Sample Numbers

IV. CONCLUSION

多模态是一个亮点?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值