深度学习课堂笔记–卷积神经网络
CNN经典模型网络层次越来越深,越来越复杂,模型效果越来越好
卷积神经网络结构
核心层:卷积层、池化层
卷积层
一维离散卷积:
二维卷积:
一个矩阵翻转后和另一个矩阵移位相乘
卷积层的运算过程
卷积层的目的是萃取出图片中的特征,识别边界
卷积运算步长 stride:滤波器每次移动的步幅,一般为1,意味着滤镜逐个像素移动
数据填充 padding:边缘数据不丢失
实际的卷积中,卷积核具有长、宽、深三个维度
核深度和图片的通道数一致
输出的特征图数量(通道数)由卷积核个数决定
卷积层激活函数
sigmoid、ReLU、leakyReLU
卷积层的优势
参数共享:用卷积核的参数来代替全连接的权重,减少参数数量;filter的参数共享具有平移不变性;参数共享实现边界检测。
连接的稀疏性:
输出图象的任何一个单元,只和输入图象的一部分有关系
减少了权值的数量使网络易于优化
减少模型复杂度减少过拟合风险
池化层
目的:减少像素信息