转载自:零基础入门深度学习(1) - 感知器 - 作业部落 Cmd Markdown 编辑阅读器
深度学习是啥
在人工智能领域,有一个方法叫机器学习。在机器学习这个方法里,有一类算法叫神经网络。神经网络如下图所示:
上图中每个圆圈都是一个神经元,每条线表示神经元之间的连接。我们可以看到,上面的神经元被分成了多层,层与层之间的神经元有连接,而层内之间的神经元没有连接。最左边的层叫做输入层,这层负责接收输入数据;最右边的层叫输出层,我们可以从这层获取神经网络输出数据。输入层和输出层之间的层叫做隐藏层。
隐藏层比较多(大于2)的神经网络叫做深度神经网络。而深度学习,就是使用深层架构(比如,深度神经网络)的机器学习方法。
那么深层网络和浅层网络相比有什么优势呢?简单来说深层网络能够表达力更强。事实上,一个仅有一个隐藏层的神经网络就能拟合任何一个函数,但是它需要很多很多的神经元。而深层网络用少得多的神经元就能拟合同样的函数。也就是为了拟合一个函数,要么使用一个浅而宽的网络,要么使用一个深而窄的网络。而后者往往更节约资源。
深层网络也有劣势,就是它不太容易训练。简单的说,你需要大量的数据,很多的技巧才能训练好一个深层网络。这是个手艺活。
感知器
看到这里,如果你还是一头雾水,那也是很正常的。为了理解神经网络,我们应该先理解神经网络的组成单元——神经元。神经元也叫做感知器。感知器算法在上个世纪50-70年代很流行,也成功解决了很多问题。并且,感知器算法也是非常简单的。
感知器的定义
下图是一个感知器:
可以看到,一个感知器有如下组成部分:
-
输入权值 一个感知器可以接收多个输入,每个输入上有一个权值,此外还有一个偏置项 ,就是上图中的 。
-
激活函数 感知器的激活函数可以有很多选择,比如我们可以选择下面这个阶跃函数 来作为激活函数:
- 输出 感知器的输出由下面这个公式来计算
如果看完上面的公式一下子就晕了,不要紧,我们用一个简单的例子来帮助理解。
例子:用感知器实现and
函数
我们设计一个感知器,让它来实现and
运算。程序员都知道,and
是一个二元函数(带有两个参数 和 ),下面是它的真值表:
为了计算方便,我们用0表示false,用1表示true。这没什么难理解的,对于C语言程序员来说,这是天经地义的。
我们令,而激活函数 就是前面写出来的阶跃函数,这时,感知器就相当于and
函数。不明白?我们验算一下:
输入上面真值表的第一行,即,那么根据公式(1),计算输出:
也就是当都为0的时候,为0,这就是真值表的第一行。读者可以自行验证上述真值表的第二、三、四行。
例子:用感知器实现or
函数
同样,我们也可以用感知器来实现or
运算。仅仅需要把偏置项 的值设置为-0.3就可以了。我们验算一下,下面是or
运算的真值表:
我们来验算第二行,这时的输入是,带入公式(1):
也就是当时,为1,即or
真值表第二行。读者可以自行验证其它行。
感知器还能做什么
事实上,感知器不仅仅能实现简单的布尔运算。它可以拟合任何的线性函数,任何线性分类或线性回归问题都可以用感知器来解决。前面的布尔运算可以看作是二分类问题,即给定一个输入,输出0(属于分类0)或1(属于分类1)。如下面所示,and
运算是一个线性分类问题,即可以用一条直线把分类0(false,红叉表示)和分类1(true,绿点表示)分开。
然而,感知器却不能实现异或运算,如下图所示,异或运算不是线性的,你无法用一条直线把分类0和分类1分开。
感知器的训练
现在,你可能困惑前面的权重项和偏置项的值是如何获得的呢?这就要用到感知器训练算法:将权重项和偏置项初始化为0,然后,利用下面的感知器规则迭代的修改和,直到训练完成。
其中:
是与输入对应的权重项,是偏置项。事实上,可以把 看作是值永远为1的输入 所对应的权重。 是训练样本的实际值,一般称之为label。而 是感知器的输出值,它是根据公式(1)计算得出。 是一个称为学习速率的常数,其作用是控制每一步调整权的幅度。
每次从训练数据中取出一个样本的输入向量 ,使用感知器计算其输出 ,再根据上面的规则来调整权重。每处理一个样本就调整一次权重。经过多轮迭代后(即全部的训练数据被反复处理多轮),就可以训练出感知器的权重,使之实现目标函数。
编程实战:实现感知器
完整代码请参考GitHub: https://github.com/hanbt/learn_dl/blob/master/perceptron.py (python2.7)