线性回归与逻辑回归(二)——算法实现

在这里插入图片描述

1、线性回归

参考连接:python机器学习手写算法系列——线性回归

1.1、数据收集

data = np.array([[1, 2.5], [2, 3.3], [2.5, 3.8], [3, 4.5], [4, 5.7], [5, 6]])

1.2、数据可视化

用图打出来看看他们之间的关系,发现他们之间大致是一个线性关系,可以试着用一元线性回归去拟合(fit)他们之间的关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值