深入浅出TensorFlow(1)——linear recognition实现

TensorFlow是目前非常流行的deep learning框架,学习TensorFlow最好的方法是github上的tf项目https://github.com/tensorflow/tensorflow或者阅读极客学院主导翻译的中文教程http://wiki.jikexueyuan.com/project/tensorflow-zh/how_tos/reading_data.html 。

此处对tensorflow的基本语法不予赘述,直接贴上源码:

import numpy as np
import tensorflow as tf

#准备数据
trainX = np.linspace(-1, 1, 101)
trainY = 2 * trainX + np.random.randn(*trainX.shape) * 0.33

#定义模型
def model(X, w):
    return tf.multiply(X, w)

#初始化数据流图
X = tf.placeholder('float')
Y = tf.placeholder('float')

w = tf.Variable(0.0, name = 'weights')

y_ = model(X, w)

#评估模型
cost = tf.square(Y - y_)
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(cost)

sess = tf.InteractiveSession()
init = tf.initialize_all_variables()
#训练
sess.run(init)
for i in range(100):
    for (x, y) in zip(trainX, trainY):
        sess.run(train_op, feed_dict = {X: x, Y: y})
print(sess.run(w))

sess.close()

转自:https://www.cnblogs.com/upright/p/6136193.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值