拉格朗日乘子法

拉格朗日


等式约束

等式约束条件下的拉格朗日乘子法的一般形式可以表现为:

m i n f ( x ) ,      s . t .    h k ( x ) = 0 , k = 1 , 2 , . . . , l min f(x),\ \ \ \ s.t.\ \ h_k(x) = 0 ,k = 1,2,...,l minf(x),    s.t.  hk(x)=0,k=1,2,...,l

解决方法为乘子法:

首先定义拉格朗日函数 F ( x , λ ) F(x,\lambda) F(x,λ)

F ( x , λ ) = f ( x ) + ∑ k = 1 l λ k h k ( x ) F(x,\lambda) = f(x) + \sum_{k=1}^{l}\lambda_kh_k(x) F(x,λ)=f(x)+k=1lλkhk(x)

接下来求解下述方程组

∂ F ∂ x = 0 , ∂ F ∂ λ k = 0 , k = 1 , 2 , . . . , l \frac{\partial F}{\partial x} = 0,\frac{\partial F}{\partial \lambda_k} = 0,k = 1,2,...,l xF=0,λkF=0,k=1,2,...,l

共有 l + 1 l+1 l+1 个方程,将 x , λ k , k = 1 , 2 , . . . , l x,\lambda_k,k=1,2,...,l x,λk,k=1,2,...,l求解出来,即得到最优解。


不等式约束 & KKT条件

等式约束条件下的优化问题的一般形式可以表现为:

m i n f ( x ) min f(x) minf(x)
s . t .    h j ( x ) = 0 , j = 1 , 2 , . . . , p s.t.\ \ h_j(x) = 0,j = 1,2,...,p s.t.  hj(x)=0,j=1,2,...,p
g k ( x ) ≤ 0 , k = 1 , 2 , . . . , q g_k(x)\leq 0 ,k = 1,2,...,q gk(x)0,k=1,2,...,q

则此时的拉格朗日函数为 L ( x , λ , μ ) L(x,\lambda,\mu) L(x,λ,μ)

L ( x , λ , μ ) = f ( x ) + ∑ j = 1 p λ j h j ( x ) + ∑ k = 1 q μ k g k ( x ) L(x,\lambda,\mu) = f(x) + \sum_{j=1}^{p}\lambda_jh_j(x) + \sum_{k=1}^{q}\mu_kg_k(x) L(x,λ,μ)=f(x)+j=1pλjhj(x)+k=1qμkgk(x)

下面给出 K K T KKT KK

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值