单层神经网络-线性回归

本文介绍了单层神经网络在线性回归中的应用,详细讲解了神经网络的基本概念,并通过PyTorch展示了如何实现单层神经网络的正向传播。线性回归是一种预测性建模技术,通过构建损失函数来找到最佳的权重和偏差。在PyTorch中,使用nn.Linear类定义输出层,并自动初始化权重和偏差。
摘要由CSDN通过智能技术生成

单层神经网络-线性回归

大家有兴趣可以关注我的个人博客,可以相互添加友链,哈哈。
TiManchi

神经网络简介

神经网络是模仿人类大脑结构所构建的算法,在人脑里,我们有轴突连接神经元,在算法中,我们用圆表示神经元,用线表示神经元之间的连接,数据从神经网络的左侧输入,让神经元处理之后,从右侧输出结果。

在这里插入图片描述

在这里插入图片描述

回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。线性回归是回归问题中的一种,线性回归假设目标值与特征之间线性相关,即满足一个多元一次方程。通过构建损失函数,来求解损失函数最小时的参数w和b。通常我们可以表达成如下公式:

y ^ = x 1 w 1 + x 2 w 2 + . . . + b \hat{y}=x_{1}w_{1}+x_{2}w_{2} + ... + b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值