用Python实现斯皮尔曼等级相关性检验

240 篇文章 47 订阅 ¥99.90 ¥299.90
31 篇文章 8 订阅 ¥99.90 ¥299.90
30 篇文章 5 订阅 ¥129.90 ¥299.90
本文介绍了如何利用Python的SciPy库中的spearmanr函数进行斯皮尔曼等级相关性检验,这是一种非参数统计方法,用于评估两个连续变量的相关性,即使数据不满足正态分布。通过示例代码展示了计算过程和结果解析。
摘要由CSDN通过智能技术生成

用Python实现斯皮尔曼等级相关性检验

斯皮尔曼等级相关性检验是一种非参数统计方法,用于衡量两个连续变量之间的相关性。与皮尔逊相关系数(Pearson correlation coefficient)不同,斯皮尔曼等级相关性检验并不要求数据点满足正态分布假设,而是将每个数据点的原始值替换为其在数据集中的排序位置。

Python中的SciPy库提供了spearmanr函数用于计算斯皮尔曼等级相关系数以及相应的p值。

以下是一个简单的Python程序,演示如何使用spearmanr函数进行斯皮尔曼等级相关性检验:

import numpy as np
from scipy.stats import spearmanr

# 生成两个随机变量
x = np.random.normal
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码编织匠人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值