用Python实现斯皮尔曼等级相关性检验
斯皮尔曼等级相关性检验是一种非参数统计方法,用于衡量两个连续变量之间的相关性。与皮尔逊相关系数(Pearson correlation coefficient)不同,斯皮尔曼等级相关性检验并不要求数据点满足正态分布假设,而是将每个数据点的原始值替换为其在数据集中的排序位置。
Python中的SciPy库提供了spearmanr函数用于计算斯皮尔曼等级相关系数以及相应的p值。
以下是一个简单的Python程序,演示如何使用spearmanr函数进行斯皮尔曼等级相关性检验:
import numpy as np
from scipy.stats import spearmanr
# 生成两个随机变量
x = np.random.normal