MAX-SUM算法 Matlab

273 篇文章 55 订阅 ¥99.90 ¥299.90
273 篇文章 5 订阅 ¥99.90 ¥299.90
219 篇文章 53 订阅 ¥99.90 ¥299.90
MAX-SUM算法用于寻找序列中最大连续子序列和,本文提供了一个MATLAB版本的实现,函数max_sum接收行向量v和正整数n,返回最大子序列和及起始下标。代码复杂度为O(m-n+1)。
摘要由CSDN通过智能技术生成

MAX-SUM算法 Matlab

MAX-SUM算法是一种用于求最大子序列和的常见问题的解决方案。一个序列中有很多子序列,MAX-SUM算法的目的就是找到其中合法的最大连续子序列和。

这里我们提供一个MATLAB版本的MAX-SUM算法的实现。函数max_sum接受两个输入:一个行向量v和一个正整数n,并输出两个值:第一个是长度为n的最大连续子序列和,第二个是最大子序列和的第一个元素的下标。

代码如下:

function [summa, index] = max_sum(v, n)
    if n > 
k-means聚类算法是一种常用的无监督学习算法,用于将数据集划分为k个不同的类别。这个算法的目标是最小化每个数据点与其所属类别的质心之间的距离的平方和。下面是k-means算法Matlab实现的简要介绍[^1][^2]: 1. 首先,选择k个初始质心。可以随机选择k个数据点作为初始质心,或者使用更高级的初始化方法,如k-means++算法。 2. 对于每个数据点,计算其与每个质心之间的距离,并将其分配给距离最近的质心所代表的类别。 3. 更新每个类别的质心,将其设置为该类别中所有数据点的平均值。 4. 重复步骤2和步骤3,直到质心不再发生变化或达到预定的迭代次数。 下面是一个使用Matlab实现k-means算法的示例代码: ```matlab % 设置参数 k = 3; % 类别数 max_iters = 10; % 最大迭代次数 % 加载数据集 load('data.mat'); % 假设数据集保存在data.mat文件中 % 初始化质心 centroids = initCentroids(X, k); % 使用自定义的初始化函数initCentroids % 迭代更新质心和类别 for iter = 1:max_iters % 分配数据点到最近的质心 idx = findClosestCentroids(X, centroids); % 使用自定义的函数findClosestCentroids % 更新质心 centroids = computeCentroids(X, idx, k); % 使用自定义的函数computeCentroids end % 自定义的初始化函数 function centroids = initCentroids(X, k) % 随机选择k个数据点作为初始质心 randidx = randperm(size(X, 1)); centroids = X(randidx(1:k), :); end % 自定义的函数,用于计算每个数据点与质心之间的距离并分配类别 function idx = findClosestCentroids(X, centroids) K = size(centroids, 1); idx = zeros(size(X,1), 1); for i = 1:size(X, 1) min_dist = inf; for j = 1:K dist = sum((X(i,:) - centroids(j,:)).^2); if dist < min_dist min_dist = dist; idx(i) = j; end end end end % 自定义的函数,用于更新质心 function centroids = computeCentroids(X, idx, K) [m n] = size(X); centroids = zeros(K, n); for i = 1:K centroids(i,:) = mean(X(idx == i,:)); end end ``` 这是一个简单的k-means算法Matlab实现,你可以根据自己的数据集和需求进行相应的修改和调整。希望对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码编织匠人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值