PyTorch之前向传播函数forward

参考:1. pytorch学习笔记(九):PyTorch结构介绍

2.pytorch学习笔记(七):pytorch hook 和 关于pytorch backward过程的理解

3.Pytorch入门学习(三):Neural Networks

4.forward

神经网络的典型处理如下所示:

1. 定义可学习参数的网络结构(堆叠各层和层的设计);
2. 数据集输入;
3. 对输入进行处理(由定义的网络层进行处理),主要体现在网络的前向传播;
4. 计算loss ,由Loss层计算;
5. 反向传播求梯度;
6. 根据梯度改变参数值,最简单的实现方式(SGD)为:
   weight = weight - learning_rate * gradient
下面是利用PyTorch定义深度网络层(Op)示例:
 

class FeatureL2Norm(torch.nn.Module):
    def __init__(self):
        super(FeatureL2Norm, self).__init__()
 
    def forward(self, feature):
        epsilon = 1e-6
#        print(feature.size())
#        print(torch.pow(torch.sum(torch.pow(feature,2),1)+epsilon,0.5).size())
        norm = torch.pow(torch.sum(torch.pow(feature,2),1)+epsilon,0.5).unsqueeze(1).expand_as(feature)
        return torch.div(feature,norm)
class FeatureRegression(nn.Module):
    def __init__(self, output_dim=6, use_cuda=True):
        super(FeatureRegression, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(225, 128, kernel_size=7, padding=0),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 64, kernel_size=5, padding=0),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
        )
        self.linear = nn.Linear(64 * 5 * 5, output_dim)
        if use_cuda:
            self.conv.cuda()
            self.linear.cuda()
 
    def forward(self, x):
        x = self.conv(x)
        x = x.view(x.size(0), -1)
        x = self.linear(x)
        return x

由上例代码可以看到,不论是在定义网络结构还是定义网络层的操作(Op),均需要定义forward函数,下面看一下PyTorch官网对PyTorch的forward方法的描述:

那么调用forward方法的具体流程是什么样的呢?具体流程是这样的:

以一个Module为例:
1. 调用module的call方法
2. module的call里面调用module的forward方法
3. forward里面如果碰到Module的子类,回到第1步,如果碰到的是Function的子类,继续往下
4. 调用Function的call方法
5. Function的call方法调用了Function的forward方法。
6. Function的forward返回值
7. module的forward返回值
8. 在module的call进行forward_hook操作,然后返回值
上述中“调用module的call方法”是指nn.Module 的__call__方法。定义__call__方法的类可以当作函数调用,具体参考Python的面向对象编程。也就是说,当把定义的网络模型model当作函数调用的时候就自动调用定义的网络模型的forward方法。nn.Module 的__call__方法部分源码如下所示:
 

def __call__(self, *input, **kwargs):
   result = self.forward(*input, **kwargs)
   for hook in self._forward_hooks.values():
       #将注册的hook拿出来用
       hook_result = hook(self, input, result)
   ...
   return result

可以看到,当执行model(x)的时候,底层自动调用forward方法计算结果。具体示例如下:

class Function:
    def __init__(self):
        ...
    def forward(self, inputs):
        ...
        return outputs
    def backward(self, grad_outs):
        ...
        return grad_ins
    def _backward(self, grad_outs):
        hooked_grad_outs = grad_outs
        for hook in hook_in_outputs:
            hooked_grad_outs = hook(hooked_grad_outs)
        grad_ins = self.backward(hooked_grad_outs)
        hooked_grad_ins = grad_ins
        for hook in hooks_in_module:
            hooked_grad_ins = hook(hooked_grad_ins)
        return hooked_grad_ins

model = LeNet()
y = model(x)
如上则调用网络模型定义的forward方法。

PyTorch中,定义反向传播函数通常是通过创建一个自定义的PyTorch模型类来实现的。以下是一个简单的示例: ```python import torch import torch.nn as nn class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() # 定义模型的层和参数 self.fc1 = nn.Linear(10, 5) self.fc2 = nn.Linear(5, 1) def forward(self, x): # 定义前向传播的计算过程 x = self.fc1(x) x = torch.relu(x) x = self.fc2(x) return x model = MyModel() # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) # 前向传播 inputs = torch.randn(1, 10) outputs = model(inputs) # 反向传播 loss = criterion(outputs, torch.randn(1, 1)) optimizer.zero_grad() loss.backward() optimizer.step() ``` 在上述示例中,我们首先定义了一个自定义的模型类`MyModel`,其中包含了两个全连接层`fc1`和`fc2`。在`forward`方法中,我们定义了前向传播的计算过程。然后,我们创建了一个模型实例`model`。 接下来,我们定义了损失函数(这里使用均方误差损失函数)和优化器(这里使用随机梯度下降优化器)。然后,我们通过将输入数据传递给模型的`forward`方法来进行前向传播,并计算输出。 在反向传播部分,我们首先计算了损失值,然后使用`optimizer.zero_grad()`将模型参数的梯度清零,接着调用`loss.backward()`进行反向传播计算梯度,最后使用`optimizer.step()`更新模型参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值