PyTorch之前向传播函数forward

本文详细解析了神经网络的训练流程,包括网络结构定义、数据处理、前向传播、损失计算、反向传播及参数更新,并通过PyTorch示例展示了深度网络层的定义与操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

神经网络的典型处理如下所示:

1. 定义可学习参数的网络结构(堆叠各层和层的设计);
2. 数据集输入;
3. 对输入进行处理(由定义的网络层进行处理),主要体现在网络的前向传播;
4. 计算loss ,由Loss层计算;
5. 反向传播求梯度;
6. 根据梯度改变参数值,最简单的实现方式(SGD)为:

   weight = weight - learning_rate * gradient

下面是利用PyTorch定义深度网络层(Op)示例:

class FeatureL2Norm(torch.nn.Module):
    def __init__(self):
        super(FeatureL2Norm, self).__init__()

    def forward(self, feature):
        epsilon = 1e-6
#        print(feature.size())
#        print(torch.pow(torch.sum(torch.pow(feature,2),1)+epsilon,0.5).size())
        norm = torch.pow(torch.sum(torch.pow(feature,2),1)+epsilon,0.5).unsqueeze(1).expand_as(feature)
        return torch.div(feature,norm)
class FeatureRegression(nn.Module):
    def __init__(self, output_dim=6, use_cuda=True):
        super(FeatureRegression, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(225, 128, kernel_size=7, padding=0),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 64, kernel_size=5, padding=0),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
        )
        self.linear = nn.Linear(64 * 5 * 5, output_dim)
        if use_cuda:
            self.conv.cuda()
            self.linear.cuda()

    def forward(self, x):
        x = self.conv(x)
        x = x.view(x.size(0), -1)
        x = self.linear(x)
        return x

由上例代码可以看到,不论是在定义网络结构还是定义网络层的操作(Op),均需要定义forward函数,下面看一下PyTorch官网对PyTorch的forward方法的描述:

那么调用forward方法的具体流程是什么样的呢?具体流程是这样的:

以一个Module为例:
1. 调用module的call方法
2. module的call里面调用module的forward方法
3. forward里面如果碰到Module的子类,回到第1步,如果碰到的是Function的子类,继续往下
4. 调用Function的call方法
5. Function的call方法调用了Function的forward方法。
6. Function的forward返回值
7. module的forward返回值
8. 在module的call进行forward_hook操作,然后返回值。

上述中“调用module的call方法”是指nn.Module 的__call__方法。定义__call__方法的类可以当作函数调用,具体参考Python的面向对象编程。也就是说,当把定义的网络模型model当作函数调用的时候就自动调用定义的网络模型的forward方法。nn.Module 的__call__方法部分源码如下所示:

def __call__(self, *input, **kwargs):
   result = self.forward(*input, **kwargs)
   for hook in self._forward_hooks.values():
       #将注册的hook拿出来用
       hook_result = hook(self, input, result)
   ...
   return result

可以看到,当执行model(x)的时候,底层自动调用forward方法计算结果。具体示例如下:

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()

	layer1 = nn.Sequential()
	layer1.add_module('conv1', nn.Conv(1, 6, 3, padding=1))
	layer1.add_moudle('pool1', nn.MaxPool2d(2, 2))
	self.layer1 = layer1

	layer2 = nn.Sequential()
	layer2.add_module('conv2', nn.Conv(6, 16, 5))
	layer2.add_moudle('pool2', nn.MaxPool2d(2, 2))
	self.layer2 = layer2

	layer3 = nn.Sequential()
	layer3.add_module('fc1', nn.Linear(400, 120))
	layer3.add_moudle('fc2', nn.Linear(120, 84))
	layer3.add_moudle('fc3', nn.Linear(84, 10))
	self.layer3 = layer3
    def forward(self, x):
	x = self.layer1(x)
	x = self.layer2(x)
	x = x.view(x.size(0), -1)
	x = self.layer3(x)
	return x

model = LeNet()
y = model(x)

如上则调用网络模型定义的forward方法。

如果您觉得我的文章对您有所帮助,欢迎扫码进行赞赏!

参考:

1. pytorch学习笔记(九):PyTorch结构介绍

2. pytorch学习笔记(七):pytorch hook 和 关于pytorch backward过程的理解

3. Pytorch入门学习(三):Neural Networks

 

 

### 使用 Numpy 和 PyTorch 实现梯度下降算法 #### Numpy 版本的梯度下降实现 Numpy 是一种强大的数值计算库,在机器学习领域广泛用于矩阵运算。下面是一个简单的线性回归例子,展示如何利用 Numpy 来执行梯度下降。 ```python import numpy as np def compute_error_for_line_given_points(b, m, points): totalError = 0 for i in range(0, len(points)): x = points[i, 0] y = points[i, 1] totalError += (y - (m * x + b)) ** 2 return totalError / float(len(points)) def step_gradient(b_current, m_current, points, learning_rate): b_gradient = 0 m_gradient = 0 N = float(len(points)) for i in range(0, len(points)): x = points[i, 0] y = points[i, 1] b_gradient += -(2/N) * (y - ((m_current * x) + b_current)) m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current)) new_b = b_current - (learning_rate * b_gradient) new_m = m_current - (learning_rate * m_gradient) return [new_b, new_m] def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations): b = starting_b m = starting_m for i in range(num_iterations): b, m = step_gradient(b, m, np.array(points), learning_rate) return [b, m] points = np.genfromtxt('data.csv', delimiter=',') learning_rate = 0.0001 initial_b = 0 initial_m = 0 num_iterations = 1000 [b, m] = gradient_descent_runner(points, initial_b, initial_m, learning_rate, num_iterations) print(f"最佳拟合线: 斜率 {m}, 截距 {b}") ``` 此代码片段展示了基于均方误差(MSE)作为代价函数的一维线性回归模型的学习过程[^1]。 #### PyTorch 版本的梯度下降实现 PyTorch 提供了一个自动求导机制 `autograd` ,这使得编写神经网络变得非常方便。下面是同样的线性回归问题在 PyTorch 中的解决方式: ```python import torch import torch.nn.functional as F from torch.autograd import Variable dtype = torch.float device = torch.device("cpu") # 创建一些假数据集 x_data = Variable(torch.tensor([[1.0], [2.0], [3.0]]).type(dtype)) y_data = Variable(torch.tensor([[2.0], [4.0], [6.0]]).type(dtype)) class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() self.linear = torch.nn.Linear(1, 1) def forward(self, x): y_pred = self.linear(x) return y_pred model = Model() criterion = torch.nn.MSELoss(size_average=False) optimizer = torch.optim.SGD(model.parameters(), lr=0.01) for epoch in range(500): model.train() # Forward pass: Compute predicted y by passing x to the model pred_y = model(x_data) loss = criterion(pred_y, y_data) optimizer.zero_grad() # 清除之前的梯度 # Backward pass and updates weights. loss.backward(retain_graph=True) optimizer.step() if (epoch+1) % 50 == 0: print(f'Epoch[{epoch+1}/500], Loss: {loss.item():.4f}') predicted = model.forward(torch.tensor([[4.0]])).item() print(f'预测值为{predicted}') ``` 这段代码创建了一个单层线性模型,并使用随机梯度下降(SGD)来进行参数更新。这里的关键在于 PyTorch 的 `backward()` 函数会自动生成反向传播所需的梯度信息[^2]。 #### 比较两者的区别 - **易用性和灵活性**: PyTorch 自带了许多工具简化了开发流程,特别是对于构建复杂的深度学习架构来说更为友好;而 Numpy 则更适合于快速原型设计以及理解底层原理。 - **性能差异**: 对于大规模的数据集和复杂模型而言,GPU 加速下的 PyTorch 性能远超仅依赖 CPU 运算的 Numpy 方案。 - **自动化程度**: PyTorch 支持动态图结构(`autograd`),这意味着它可以在运行时调整图形拓扑结构,这对于某些特定类型的模型非常重要。相比之下,Numpy 不具备这样的特性,所有的操作都需要手动编码完成[^3]。
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值