初步实现fft(偶数点与奇数点均可)

本文介绍了如何实现一个不受点数限制的快速傅里叶变换(FFT)算法,特别适用于点数不是2的幂的情况。作者在处理图像傅里叶变换时遇到需要补0的问题,这会导致频率域拓宽。为解决这一问题,作者自创了一种方法,能够分别处理奇数点和偶数点的序列,并通过直接离散傅里叶变换(DFT)计算奇数部分的频域值,最后利用FFT组合结果。文章以代码展示实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   之前做图像傅里叶变换时,想自己实现快速傅里叶变换,苦于网上的fft代码都要求点数是2的幂次方,在补0变换后加滤波需要分析补0的影响(频率域拓宽),于是自己实现了一下不论奇数偶数均可的fft。

   算法很简单,在计算中若序列总数为偶数就划分为奇数部分与偶数部分,直到所有序列都为奇数时,直接用dft计算奇数部分的频域值,再用fft组合起来。

先贴代码,首先定义复数结构体

struct fu
{
	double real;	//实部 
	double imag;	//虚部 
}; 
fft主体,dft_ffts这个函数是普通的dft,用作在分为不可再分的奇数点时计算,外部调用直接用ffts函数即可

/*计算复数的乘*/
struct fu mul(fu a,fu b)
{
	fu r;
	r.real=a.real*b.real-a.imag*b.imag;
	r.imag=a.real*b.imag+a.imag*b.real;
	return r;
}
/*dft*/ 
void dft_ffts(struct fu* linear,int size,int start,int step) 
{
	int i,j,k;
	fu* dft=(struct fu*)malloc(sizeof(struct fu)*size);
	fu mulf;
	for(i=0;i<size;i++)	//频率循环 
	{
		dft[i].real=0;
		dft[i].imag=0;
		for(k=0;k<size;k++)	//时域循环 
		{
			mulf.real=cos(2*M_PI*i*k/size);
			m
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值