(画家问题,类似于熄灯问题)
问题描述
有一个正方形的墙,由 N*N 个正方形的砖组成,其中一些砖是白色的,另外一些砖是黄色的。Bob 是个画家,想把全部的砖都涂成黄色。但他的画笔不好使。当他用画笔涂画第(i, j)个位置的砖时, 位置(i-1, j)、 (i+1, j)、 (i, j-1)、(i, j+1)上的砖都会改变颜色。请你帮助 Bob 判断能否将所有的砖都涂成黄色,并且在能将所有的砖都涂成黄色时计算出最少需要涂画多少块砖。
第一行是个整数t(1≤t≤20),表示要测试的案例数。然后是t个案例。每个案例的首行是一个整数n(1≤n≤ 15),表示墙的大小。接下来的n行表示墙的初始状态。每一行包含n个字符。第i行的第j个字符表示位于位置(i,j)上的砖的颜色。“w”表示白砖,“y”表示黄砖。
输出
每个案例输出一行。如果Bob能够将所有的砖都涂成黄色,则输出最少需要涂画的砖数,否则输出“inf”。
样例输入
2
3
yyy
yyy
yyy
5
wwwww
wwwww
wwwww
wwwww
wwwww
样例输出
0
15
代码演示:
#include <iostream>
#define ROW 16 //总行数
#define COLUM 17 //总列数
using namespace std;
int main()
{
int Min[16];//存放每一次计算的结果
for(int i = 0;i<16;i++){
Min[i] = 10000;//首先设置一个最小的步数;
}
int CaseNO = 0;//表示案例数;
cin>>CaseNO;
int WallNO = 0;//表示墙的行数;
int Wall[ROW][COLUM];
int Status_hua[ROW][COLUM];
int NO = 0;
for( NO = 1;NO<=CaseNO;NO++){
cin>>WallNO;
int Step = 0;
memset(Wall, 0, ROW*COLUM*sizeof(int));
//设置Wall的所有值为0;
memset(Status_hua, 0, ROW*COLUM*sizeof(int));
for(int i = 1;i<=WallNO;i++){
for(int j = 1;j<=WallNO;j++){
char temp;
cin>>temp;
if(temp == 'w'||temp =='W')//白墙的时候是1;
Wall[i][j] = 1;
else if(temp =='y'||temp =='Y')
Wall[i][j]=0;//涂成黄墙的时候为0;
}
}//输入没问题
//枚举的所有第一行的涂色情况;
while(Status_hua[1][WallNO+1]<1){//从00000开始
for(int i =1;i< WallNO;i++){//最后一行的下一行不用将其变化;
for(int j= 1;j<=WallNO;j++){
Status_hua[i+1][j] =
(Wall[i][j] + Status_hua[i][j]+Status_hua[i-1][j]+
Status_hua[i][j-1]+Status_hua[i][j+1])%2;
//计算出下面每一行的每一个的颜色的状态;
}
}
int j = 0;
for(j= 1;j<=WallNO;j++){
if((Status_hua[WallNO][j]+Status_hua[WallNO-1][j]
+Status_hua[WallNO][j+1]+Status_hua[WallNO][j-1])%2 != Wall[WallNO][j])
{
break;
}
}//将除了最后一行的所有的墙都图上了颜色;
if(j==WallNO+1){
Step= 0;
for(int i = 1;i<=WallNO;i++){
for(int k=1;k<=WallNO;k++){
if(Status_hua[i][k] ==1)
Step++;
}
}
}//数一下有多少步;
else
{
Step = 99999;//如果不能涂成黄色的墙;就将步数设置为99999;
}
if(Step<Min[NO]){
Min[NO]= Step;
}//如果小于最小步数,就将该步数赋值为Min数组中;
Status_hua[1][1]++;
int d = 1;
while(Status_hua[1][d]>1){
Status_hua[1][d] = 0;
d++;
Status_hua[1][d]++;
}//将第一行的所有状态都设置为1或者是0;
}
}
for(int i = 1;i<=CaseNO;i++){//将每一种的最小步数打印,如果不存在,就打印inf
if(Min[i]>=1000){
cout << "inf" << endl;
}
else{
cout<<Min[i]<<endl;
}
}
return 0;
}