Spring Batch学习,和Spring Cloud Stream区别


参考文章: Building a Batch Application with Spring Batch - Spring Academy

1. 使用Spring Initializr创建项目

[~/exercises] $ curl -o 'billing-job.zip' 'https://start.spring.io/starter.zip?type=gradle-project&language=java&dependencies=batch%2Cpostgresql&name=Billing+Job&groupId=example&artifactId=billing-job&description=Billing+job+for+Spring+Cellular&packaging=jar&packageName=example.billingjob&javaVersion=17' && unzip -d 'billing-job' 'billing-job.zip'
cd billing-job

查看目录

[~/exercises/billing-job] $ tree .
.
├── HELP.md
├── mvnw
├── mvnw.cmd
├── pom.xml
└── src
    ├── main
    │   ├── java
    │   │   └── example
    │   │       └── billingjob
    │   │           └── BillingJobApplication.java
    │   └── resources
    │       └── application.properties
    └── test
        └── java
            └── example
                └── billingjob
                    └── BillingJobApplicationTests.java

11 directories, 8 files

创建配置文件

package example.billingjob;

import org.springframework.context.annotation.Configuration;

@Configuration
public class BillingJobConfiguration {
  // TODO add job definition here
}
[~/exercises] $ docker ps
CONTAINER ID   IMAGE                  COMMAND                  CREATED          STATUS          PORTS                      NAMES
c711e7873371   postgres:14.1-alpine   "docker-entrypoint.s…"   20 minutes ago   Up 20 minutes   127.0.0.1:5432->5432/tcp   postgres
[~/exercises] $

连接数据库创建表

[~/exercises] $ docker exec -it postgres psql -U postgres
psql (14.1)
Type "help" for help.
postgres=#
CREATE TABLE BATCH_JOB_INSTANCE  (
    JOB_INSTANCE_ID BIGINT  NOT NULL PRIMARY KEY ,
    VERSION BIGINT ,
    JOB_NAME VARCHAR(100) NOT NULL,
    JOB_KEY VARCHAR(32) NOT NULL,
    constraint JOB_INST_UN unique (JOB_NAME, JOB_KEY)
) ;
CREATE TABLE BATCH_JOB_EXECUTION  (
    JOB_EXECUTION_ID BIGINT  NOT NULL PRIMARY KEY ,
    VERSION BIGINT  ,
    JOB_INSTANCE_ID BIGINT NOT NULL,
    CREATE_TIME TIMESTAMP NOT NULL,
    START_TIME TIMESTAMP DEFAULT NULL ,
    END_TIME TIMESTAMP DEFAULT NULL ,
    STATUS VARCHAR(10) ,
    EXIT_CODE VARCHAR(2500) ,
    EXIT_MESSAGE VARCHAR(2500) ,
    LAST_UPDATED TIMESTAMP,
    constraint JOB_INST_EXEC_FK foreign key (JOB_INSTANCE_ID)
    references BATCH_JOB_INSTANCE(JOB_INSTANCE_ID)
) ;
CREATE TABLE BATCH_JOB_EXECUTION_PARAMS  (
    JOB_EXECUTION_ID BIGINT NOT NULL ,
    PARAMETER_NAME VARCHAR(100) NOT NULL ,
    PARAMETER_TYPE VARCHAR(100) NOT NULL ,
    PARAMETER_VALUE VARCHAR(2500) ,
    IDENTIFYING CHAR(1) NOT NULL ,
    constraint JOB_EXEC_PARAMS_FK foreign key (JOB_EXECUTION_ID)
    references BATCH_JOB_EXECUTION(JOB_EXECUTION_ID)
) ;
CREATE TABLE BATCH_STEP_EXECUTION  (
    STEP_EXECUTION_ID BIGINT  NOT NULL PRIMARY KEY ,
    VERSION BIGINT NOT NULL,
    STEP_NAME VARCHAR(100) NOT NULL,
    JOB_EXECUTION_ID BIGINT NOT NULL,
    CREATE_TIME TIMESTAMP NOT NULL,
    START_TIME TIMESTAMP DEFAULT NULL ,
    END_TIME TIMESTAMP DEFAULT NULL ,
    STATUS VARCHAR(10) ,
    COMMIT_COUNT BIGINT ,
    READ_COUNT BIGINT ,
    FILTER_COUNT BIGINT ,
    WRITE_COUNT BIGINT ,
    READ_SKIP_COUNT BIGINT ,
    WRITE_SKIP_COUNT BIGINT ,
    PROCESS_SKIP_COUNT BIGINT ,
    ROLLBACK_COUNT BIGINT ,
    EXIT_CODE VARCHAR(2500) ,
    EXIT_MESSAGE VARCHAR(2500) ,
    LAST_UPDATED TIMESTAMP,
    constraint JOB_EXEC_STEP_FK foreign key (JOB_EXECUTION_ID)
    references BATCH_JOB_EXECUTION(JOB_EXECUTION_ID)
) ;
CREATE TABLE BATCH_STEP_EXECUTION_CONTEXT  (
    STEP_EXECUTION_ID BIGINT NOT NULL PRIMARY KEY,
    SHORT_CONTEXT VARCHAR(2500) NOT NULL,
    SERIALIZED_CONTEXT TEXT ,
    constraint STEP_EXEC_CTX_FK foreign key (STEP_EXECUTION_ID)
    references BATCH_STEP_EXECUTION(STEP_EXECUTION_ID)
) ;
CREATE TABLE BATCH_JOB_EXECUTION_CONTEXT  (
    JOB_EXECUTION_ID BIGINT NOT NULL PRIMARY KEY,
    SHORT_CONTEXT VARCHAR(2500) NOT NULL,
    SERIALIZED_CONTEXT TEXT ,
    constraint JOB_EXEC_CTX_FK foreign key (JOB_EXECUTION_ID)
    references BATCH_JOB_EXECUTION(JOB_EXECUTION_ID)
) ;
CREATE SEQUENCE BATCH_STEP_EXECUTION_SEQ MAXVALUE 9223372036854775807 NO CYCLE;
CREATE SEQUENCE BATCH_JOB_EXECUTION_SEQ MAXVALUE 9223372036854775807 NO CYCLE;
CREATE SEQUENCE BATCH_JOB_SEQ MAXVALUE 9223372036854775807 NO CYCLE;

检查创建的表

postgres=# \d
                      List of relations
 Schema |             Name             |   Type   |  Owner
--------+------------------------------+----------+----------
 public | batch_job_execution          | table    | postgres
 public | batch_job_execution_context  | table    | postgres
 public | batch_job_execution_params   | table    | postgres
 public | batch_job_execution_seq      | sequence | postgres
 public | batch_job_instance           | table    | postgres
 public | batch_job_seq                | sequence | postgres
 public | batch_step_execution         | table    | postgres
 public | batch_step_execution_context | table    | postgres
 public | batch_step_execution_seq     | sequence | postgres
(9 rows)
postgres=#

修改配置billing-job/src/main/resources/application.properties

spring.datasource.url=jdbc:postgresql://localhost:5432/postgres
spring.datasource.username=postgres
spring.datasource.password=postgres

2. 使用步骤构建作业(Chunk 模式)

很好!下面是 Spring Batch 模块 2:使用步骤构建作业(Chunk 模式) 的完整示例,模拟一个典型的「读取 → 处理 → 写入」的场景。


🧩 场景说明

我们将读取一个 CSV 文件中的用户信息(users.csv),处理数据(将用户名转为大写),然后将处理结果打印出来(模拟写入数据库)。


🧰 1. 示例目录结构

src/
├── main/
│   ├── java/
│   │   └── com/example/batch/
│   │       ├── BatchDemoApplication.java
│   │       ├── config/ChunkJobConfig.java
│   │       ├── model/User.java
│   │       ├── processor/UserItemProcessor.java
│   ├── resources/
│       ├── users.csv
│       └── application.yml

📄 2. 创建输入文件(users.csv

id,name
1,alice
2,bob
3,charlie

🧱 3. 创建实体类(User.java

public class User {
    private Long id;
    private String name;

    // 构造方法、getter/setter

    public User() {}

    public User(Long id, String name) {
        this.id = id;
        this.name = name;
    }

    public Long getId() { return id; }
    public void setId(Long id) { this.id = id; }

    public String getName() { return name; }
    public void setName(String name) { this.name = name; }

    @Override
    public String toString() {
        return "User{id=" + id + ", name='" + name + "'}";
    }
}

🔄 4. 编写处理器(UserItemProcessor.java

@Component
public class UserItemProcessor implements ItemProcessor<User, User> {
    @Override
    public User process(User user) {
        user.setName(user.getName().toUpperCase());
        return user;
    }
}

⚙️ 5. Job 配置(ChunkJobConfig.java

@Configuration
@EnableBatchProcessing
public class ChunkJobConfig {

    @Autowired
    private JobBuilderFactory jobBuilderFactory;
    @Autowired
    private StepBuilderFactory stepBuilderFactory;
    @Autowired
    private UserItemProcessor processor;

    // 读取器:从 CSV 文件中读取数据
    @Bean
    public FlatFileItemReader<User> reader() {
        return new FlatFileItemReaderBuilder<User>()
                .name("userItemReader")
                .resource(new ClassPathResource("users.csv"))
                .delimited()
                .names("id", "name")
                .fieldSetMapper(fieldSet -> new User(
                        fieldSet.readLong("id"),
                        fieldSet.readString("name")
                ))
                .linesToSkip(1) // 跳过标题行
                .build();
    }

    // 写入器:将处理后的数据打印到控制台(模拟写数据库)
    @Bean
    public ItemWriter<User> writer() {
        return users -> {
            System.out.println("📥 写入数据:");
            users.forEach(System.out::println);
        };
    }

    @Bean
    public Step chunkStep() {
        return stepBuilderFactory.get("chunkStep")
                .<User, User>chunk(2) // 每2个为一个块处理
                .reader(reader())
                .processor(processor)
                .writer(writer())
                .build();
    }

    @Bean
    public Job chunkJob() {
        return jobBuilderFactory.get("chunkJob")
                .start(chunkStep())
                .build();
    }
}

🚀 6. 启动类(BatchDemoApplication.java

@SpringBootApplication
public class BatchDemoApplication {
    public static void main(String[] args) {
        SpringApplication.run(BatchDemoApplication.class, args);
    }
}

📄 7. 配置文件(application.yml

spring:
  batch:
    job:
      enabled: true
  datasource:
    url: jdbc:h2:mem:testdb
    driver-class-name: org.h2.Driver
    username: sa
    password:
  h2:
    console:
      enabled: true

✅ 8. 启动后输出示例

📥 写入数据:
User{id=1, name='ALICE'}
User{id=2, name='BOB'}
📥 写入数据:
User{id=3, name='CHARLIE'}

🎓 小结

部件作用
ItemReader读取数据源(CSV)
ItemProcessor转换数据(小写转大写)
ItemWriter输出结果(控制台)
chunk(n)每 n 条数据为一个事务处理块

3. 添加容错功能(retry、skip)


🎯 场景目标

在上一个示例基础上,模拟某些数据处理失败 的情况,并配置:

  • ✅ 自动重试指定异常(如最多重试 2 次)
  • ✅ 跳过指定异常(跳过错误记录继续执行)

🧱 修改点概览

部分修改
processor模拟处理过程中抛异常
chunkStep()添加 .faultTolerant().retry().skip() 配置
控制台输出可看到错误被捕获、重试、跳过后的行为

🧩 1. 修改 UserItemProcessor.java,模拟失败逻辑

@Component
public class UserItemProcessor implements ItemProcessor<User, User> {

    @Override
    public User process(User user) throws Exception {
        // 模拟用户 id 为 2 的处理会失败
        if (user.getId() == 2) {
            System.out.println("❌ 模拟处理异常:用户 " + user.getName());
            throw new IllegalArgumentException("处理用户失败!");
        }
        user.setName(user.getName().toUpperCase());
        return user;
    }
}

🛠️ 2. 修改 chunkStep():添加容错配置

@Bean
public Step chunkStep() {
    return stepBuilderFactory.get("chunkStep")
            .<User, User>chunk(2)
            .reader(reader())
            .processor(processor)
            .writer(writer())
            .faultTolerant()                            // 开启容错模式
            .retry(IllegalArgumentException.class)     // 指定重试异常
            .retryLimit(2)                              // 最多重试 2 次
            .skip(IllegalArgumentException.class)      // 如果还失败则跳过
            .skipLimit(5)                               // 最多跳过 5 个
            .build();
}

📄 3. 示例 CSV 文件(users.csv

id,name
1,alice
2,bob      <-- 模拟失败
3,charlie

✅ 4. 启动后控制台输出示例

👉 正在读取用户数据...
📥 写入数据:
User{id=1, name='ALICE'}
❌ 模拟处理异常:用户 bob
⚠️ 重试第1次...
❌ 模拟处理异常:用户 bob
⚠️ 重试第2次...
❌ 模拟处理异常:用户 bob
⚠️ 达到重试次数限制,跳过该用户

📥 写入数据:
User{id=3, name='CHARLIE'}

你将看到:

  • 用户 bob 被处理时故意失败
  • 自动重试 2 次
  • 重试仍失败 → 被跳过
  • Job 正常完成,未中断!

🔎 总结关键 API

方法含义
.faultTolerant()启用容错处理
.retry(Exception.class)出现该异常时会自动重试
.retryLimit(n)最大重试次数
.skip(Exception.class)如果重试仍失败,可以跳过
.skipLimit(n)最大跳过条数,超过就 fail

4. 多步骤 Job 示例(多个 Step 串联)


🎯 模块目标

我们将构建一个包含多个 Step 的 Job:

  1. Step 1:打印 Job 启动信息
  2. Step 2:执行 chunk 处理逻辑(读取、处理、写入用户)
  3. Step 3:清理任务或发送通知(模拟)

🗂 项目结构说明(在原基础上新增)

├── config/
│   └── MultiStepJobConfig.java    <-- 新增:多个步骤的 Job 配置
├── service/
│   └── NotificationTasklet.java   <-- 新增:通知步骤

📄 1. 创建 Tasklet 步骤:通知任务(NotificationTasklet.java

@Component
public class NotificationTasklet implements Tasklet {
    @Override
    public RepeatStatus execute(StepContribution contribution, ChunkContext chunkContext) {
        System.out.println("📣 所有用户处理完成,发送通知!");
        return RepeatStatus.FINISHED;
    }
}

⚙️ 2. 多步骤 Job 配置(MultiStepJobConfig.java

@Configuration
public class MultiStepJobConfig {

    @Autowired private JobBuilderFactory jobBuilderFactory;
    @Autowired private StepBuilderFactory stepBuilderFactory;

    @Autowired private FlatFileItemReader<User> reader;
    @Autowired private ItemProcessor<User, User> processor;
    @Autowired private ItemWriter<User> writer;
    @Autowired private NotificationTasklet notificationTasklet;

    @Bean
    public Step startStep() {
        return stepBuilderFactory.get("startStep")
                .tasklet((contribution, context) -> {
                    System.out.println("🚀 Job 开始执行!");
                    return RepeatStatus.FINISHED;
                }).build();
    }

    @Bean
    public Step chunkStep() {
        return stepBuilderFactory.get("chunkStep")
                .<User, User>chunk(2)
                .reader(reader)
                .processor(processor)
                .writer(writer)
                .faultTolerant()
                .retry(IllegalArgumentException.class)
                .retryLimit(2)
                .skip(IllegalArgumentException.class)
                .skipLimit(5)
                .build();
    }

    @Bean
    public Step notifyStep() {
        return stepBuilderFactory.get("notifyStep")
                .tasklet(notificationTasklet)
                .build();
    }

    @Bean
    public Job multiStepJob() {
        return jobBuilderFactory.get("multiStepJob")
                .start(startStep())
                .next(chunkStep())
                .next(notifyStep())
                .build();
    }
}

✅ 3. 控制台输出预期

🚀 Job 开始执行!
📥 写入数据:
User{id=1, name='ALICE'}
❌ 模拟处理异常:用户 bob
⚠️ 重试中...
📥 写入数据:
User{id=3, name='CHARLIE'}
📣 所有用户处理完成,发送通知!

🧠 关键知识点

概念说明
多个 Step使用 .start().next().next() 串联
Tasklet Step适合执行单个逻辑(如日志、通知)
Chunk Step适合批量数据处理
JobBuilder构建包含多个 Step 的流程

5. 定时调度执行 Spring Batch Job

📦 添加定时任务类(ScheduledJobLauncher.java

@Component
public class ScheduledJobLauncher {

    @Autowired
    private JobLauncher jobLauncher;

    @Autowired
    @Qualifier("multiStepJob")  // 使用我们前面定义的 Job
    private Job job;

    @Scheduled(fixedRate = 30000) // 每 30 秒触发一次
    public void runJob() {
        try {
            JobParameters params = new JobParametersBuilder()
                    .addLong("timestamp", System.currentTimeMillis()) // 保证每次唯一
                    .toJobParameters();

            System.out.println("⏰ 定时任务启动 Job...");
            jobLauncher.run(job, params);
        } catch (Exception e) {
            System.err.println("❌ Job 启动失败:" + e.getMessage());
        }
    }
}

✅ 注意:

Spring Batch 的 Job 每次执行都需要唯一参数(否则不会重复执行),因此我们加了:

.addLong("timestamp", System.currentTimeMillis())

🔧 开启定时任务功能(BatchDemoApplication.java

@SpringBootApplication
@EnableScheduling  // 启用定时任务功能
public class BatchDemoApplication {
    public static void main(String[] args) {
        SpringApplication.run(BatchDemoApplication.class, args);
    }
}

🛠 示例控制台输出(每 30 秒一次)

⏰ 定时任务启动 Job...
🚀 Job 开始执行!
📥 写入数据:
User{id=1, name='ALICE'}
❌ 模拟处理异常:用户 bob
📥 写入数据:
User{id=3, name='CHARLIE'}
📣 所有用户处理完成,发送通知!

🎓 小结

组件功能
@Scheduled每隔一段时间自动触发 Job
JobLauncher手动执行指定 Job
JobParametersBuilder创建 Job 参数,确保唯一性
@EnableScheduling启用定时任务功能

6. Spring Cloud Stream和Spring Batch区别

🧠 一句话总结

框架关注点用于什么
Spring Cloud Stream实时消息流处理处理从消息队列(如 Kafka、RabbitMQ)中来的事件流
Spring Batch批量任务处理处理大量结构化数据的离线批处理任务,如夜间账单

🔍 核心区别详解

特性 / 区别点Spring Cloud StreamSpring Batch
💡 处理模式异步、实时流式处理(事件驱动)同步、批量处理(定时或手动触发)
🕘 适用场景IoT 数据流、订单事件、消息队列消费者、微服务事件链路日终结算、数据库导入导出、文件解析、大规模数据迁移
🔌 输入来源Kafka、RabbitMQ、Pulsar 等消息中间件数据库、CSV、XML、REST 接口等
🔄 输出目标下游队列或服务数据库、文件、API
🧱 组成模型Supplier、Function、ConsumerStep、Job、ItemReader、ItemProcessor、ItemWriter
💥 故障处理支持 Retry、DLQ、分区等支持跳过、重试、事务、Job Restart
🛠️ 持久化状态一般无状态,靠中间件保证可靠传递有状态,支持 Job Execution 状态保存(如重启恢复)
🧪 测试/调试流处理链可拆解为小函数,易于集成测试Job 参数可控制执行,适合验证数据处理逻辑
🧰 配置方式application.yml(通道绑定)XML/Java DSL 配置 Job、Step、Reader 等
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值