DP+单调队列优化

单调队列优化

  使用单调队列优化的题目具有这样的特点,他需要我们维持一段区间内的某个最优值,这个区间是随着遍历的顺序变化的,但是其变化一定具有这样的特性,也即维持的区间左右端点一定是单调递增的,而不能出现回流的现象,否则我们在维持队列单调性过程中剪枝的数据可能是新的区间中的最大值。
  维持区间最优值的方法有很多,例如静态算法ST算法,动态更新区间最值的线段树等等,对于区间左端点或者右端点不单调递增的区间最值问题,我们一定只能使用线段树优化,而不能使用单调队列,我们也可以根据这个特性快速地判断到底使用什么方法优化DP问题。
  当我们观察到需要维持的区间的左右端点的变化趋势后,如果发现左右端点随着阶段的递增,也是不断递增的,那么我们一定可以选择使用单调队列优化该DP问题。
  对于一个DP问题,当我们不知道该如何优化时,我们应该先写出其朴素条件下的状态转移方程,再根据朴素状态下的状态转移方程进行变化,找到一个符合单调队列优化式子即可知晓我们在单调队列中需要维持什么。
  当然即使不用看题我们也知道,单调队列中一定维持的是状态中某一维的下标,但是我们按照什么顺序来维持这些下标,就是我们变化的目标了。通常来说使用单调队列优化的问题,其状态转移方程中一定存在这样一个状态转移方程:
在这里插入图片描述
这里l和r都是随着i的不断增加而单调增加的(可以维持原值不变,但不能递减),而f(dp[j])则表示一个之前阶段的函数,这样我们只需要实时地维持这段区间内的最值即可,当r递增时,我们需要往队列中插入元素,而当l递增时我们需要删除队尾不合法的元素,这样队尾始终维持着区间[l,r]中的最大的f(dp[j])的j值。

例题

围栏

//每块木板至多被粉刷一次
#include<bits/stdc++.h>
using namespace std;

int dp[110][16010];
vector<vector<int>> arr;
int calc(int i,int k){
    return dp[i-1][k]-arr[i][1]*k;
}
int main(){
    //先列出朴素的DP方式
    //因为同一个木板至多被粉刷一次,所以我们要表示出不同木板之间的冲突关系
    //这样我们只能以木板数为阶段进行DP;
    //同时我们还应当按照区间将所有的粉刷匠排序,不然不能求解到最优质
    int n,m;
    scanf("%d %d",&n,&m);
    arr=vector<vector<int>>(m+1,vector<int>(3));
    for(int i=1;i<=m;i++){
        scanf("%d %d %d",&arr[i][0],&arr[i][1],&arr[i][2]);
    }
    sort(arr.begin(),arr.end(),[](vector<int>&a,vector<int>&b){
       return a[2]<b[2]; 
    });
    //写出朴素的DP方程
    memset(dp,0,sizeof(dp));
    for(int i=1;i<=m;i++){
        deque<int> deq;
        for(int k=max(0,arr[i][2]-arr[i][0]);k<arr[i][2];k++){
            //先将用到的一部分预处理出来
            for(;!deq.empty()&&calc(i,k)>=calc(i,deq.front());deq.pop_front());
            deq.push_front(k);
        }
        for(int j=1;j<n+1;j++){
            //第i个工人可以选择不刷
            dp[i][j]=max(dp[i][j],dp[i-1][j]);
            //第j块木板可以选择不刷
            dp[i][j]=max(dp[i][j],dp[i][j-1]);
            //第i个人粉刷时的转移方程
            if(j>=arr[i][2]&&j<arr[i][2]+arr[i][0]){
                for(;!deq.empty()&&deq.back()<j-arr[i][0];deq.pop_back());
                dp[i][j]=max(dp[i][j],calc(i,deq.back())+arr[i][1]*j);
            }
        }
    }
    cout<<dp[m][n]<<endl;
    return 0;
}

例题

裁剪序列

#include<bits/stdc++.h>
using namespace std;

const int N=100050;
long long dp[N],vise[N];//用于懒惰标记
int  deq[N],p[N],A[N];
long long n,m;
//使用小根堆的技巧,插入相反数
priority_queue<pair<long long,int>> que;

int main(){
    scanf("%lld %lld",&n,&m);
    long long arr[n+1];
    for(int i=1;i<=n;i++){
        scanf("%lld",&arr[i]);
        if(arr[i]>m){
            cout<<-1<<endl;
            return 0;
        }
        
    }
    long long sum=0;
    int head=0;
    int tail=-1;
    int pre=1;
    //单调队列获得一段区间中的最值,不需要使用线段树,ST时间复杂度线性。
    for(int i=1;i<=n;i++){
        sum=sum+arr[i];
        for(;sum>m;pre++)sum=sum-arr[pre];
        p[i]=pre-1;
        for(;tail>=head&&deq[head]<pre;head++);
        for(;tail>=head&&arr[deq[tail]]<=arr[i];tail--);
        deq[++tail]=i;
        //先插入再更新 
        A[i]=arr[deq[head]];
    }
    head=0;
    tail=-1;
    sum=0;
    pre=1;
    for(int i=1;i<=n;i++){
        //贪心更新,尽可能使得当前这一段区间的长度够大
        dp[i]=dp[p[i]]+A[i];
        //维持arr[i]的下标递增,值递减的单调队列,注意区间右端点我们可以用之前求解的p快速获得
        for(;tail>=head&&deq[head]<p[i]+1;head++)vise[deq[head]]=0;
        for(;tail>=head&&arr[deq[tail]]<=arr[i];tail--)vise[deq[tail]]=0;
        deq[++tail]=i;//先将该元素插入队列
        //更新优先级队列,只有单调队列中元素超过两个时才可以更新
        if(tail>head){
            que.push({-dp[deq[tail-1]]-arr[deq[tail]],deq[tail-1]});
            vise[deq[tail-1]]=-dp[deq[tail-1]]-arr[deq[tail]];
        }
        //根据惰性删除,删除优先级队列中已经失效的值。
        for(;!que.empty()&&(vise[que.top().second]!=que.top().first||vise[que.top().second]==0);que.pop());
        if(!que.empty())dp[i]=min(dp[i],-que.top().first);
    }
    cout<<dp[n]<<endl;
    return 0;
}

分析
  相当棒的一道例题,可以让我们更为细致地理解如何使用单调队列,为什么使用单调队列,当区间动态变化时,我们可以使用单调队列+优先级队列的方式优化时间复杂度,当然本题实际上也可以利用线段树求解,考虑到每一个元素至多进入和离开单调队列一次,这样我们就可以在元素离开单调队列时,更新线段树中的值为无穷大,更新时使用线段树查询即可。
  这道题的特点是并不存在直观地可以用优先级队列进行优化的方法,这需要我们借助其他结构解决该问题,我们也要学会合理地利用各种数据结构,得到想要的结果。

例题

多重背包问题

#include<bits/stdc++.h>

using namespace std;

const int N=20010;

int dp[N],pre[N],q[N];
int n,m;

int main(){
	cin>>n>>m;
	for(int i=0;i<n;i++){
		memcpy(pre,dp,sizeof(dp));//关键点,将i-1个物品处理的最优值保存到pre中 
		int v,w,s;
		scanf("%d %d %d",&v,&w,&s);
		for(int j=0;j<v;j++){
			int head=0;    
			int tail=-1;
			for(int k=j;k<=m;k+=v){
			    //固定长度的区间,所以每次至多删除一个元素,我们无需使用循环
			    //单调队列固定三步,删除队头超出区间的元素
				if(head<=tail&&k-s*v>q[head]){//新的元素 
					++head; 
				}
				//剪枝队头不合法元素
				while(head<=tail&&pre[q[tail]]-(q[tail]-j)/v*w<=pre[k]-(k-j)/v*w)--tail;//入队
				//状态转移
				if(head<=tail){
					dp[k]=max(dp[k],pre[q[head]]+(k-q[head])/v*w);
				}
				//添加元素
				q[++tail]=k;
			}
		}
	}
	cout<<dp[m]<<endl;
	return 0;
}

分析
  本题是一道非常好的单调队列优化的题目,这里用到很多实用的编程技巧,首先为了降低时间复杂度,我们抛弃实用双端队列,而是用一个数组模拟单调队列,用数组模拟单调队列,我们需要保证插入元素在队尾,而删除元素在队头,否则会发生数组越界的问题。
  除此之外就是分析问题了,也即确定我们用什么大小关系来维持一个单调队列,值的注意的是,单调队列中一定维持的是体积这一维度的下标,并且维持的元素大小只与这一下标有关,而不与其他下标产生关联关系。
  本题中,当我们按照体积取余后,发现不同的背包大小之间,只有相差体积大小为第i个物品大小时,才会发生转移,其他相互不影响,所以我们可以将整个背包大小,按照第i个物品的体积大小分割成不同的余数,余数相同的一组背包体积之间可以相互转化,其他不能转化。
  这时我们就可以发现:
在这里插入图片描述
  从状态转移方程中我们可以看到,实际上我们需要维持长度不超过s的一段连续同余元素中的一个关于公式:
在这里插入图片描述
  上面这个式子中实际上只有k是变量,i-1是阶段,在这一层循环中始终不变,而j则是与所求体积有关的下标,在求解上式是是一个定值,也即在求解体积为j的背包的最优值时,上式的变量只有k,而k指的是一段区间中使得上式取的最大值的k,区间的左右端点都是单调递增的,所以我们可以用单调队列来维持这一段区间中上式的最大值的下标,这样我们就可以将时间复杂度优化到O(mn)。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值