递推——约瑟夫环

递推——约瑟夫环

这里推导这个问题我们采用从特殊到一般的方法,逐步得到通用的解。

假设这里的问题中存在n个人,报数q的人退出,编号从1n,报数从1q。

1.当q=2,n=2。

毫无疑问,是1号留到了最后。

2.当q = 2时候, n = 2 k , k ∈ N n=2^k,k\in N n=2k,kN

可以发现第一次退出的是2,然后是4,依次是$2,4,6…,2k,2k=n $ ,一圈之后又是1号报数1,场上的情况变成了 2 k − 1 2^{k-1} 2k1 个人,报2的退出,按照刚刚的推理,可以知道结果是双数离开,一圈之后回到1号报1。这样的终止将会在场上只剩下2个人,1号报1.另外一个报2,退出,结束。所以1号必胜。

3.当 n = 2 k + t , k ∈ N , t > 0 n=2^k+t,k\in N,t>0 n=2k+t,kN,t>0。q=2。

在第一轮就可以把 2 , 4 , . . . , 2 t 2,4,...,2t 2,4,...,2t ,给刷出去。接下来就是t+1报数1,问题重新变成了 n = 2 k n=2^k n=2k ,q=2的问题,所以是t+1,必胜。

4.当为一般情况n,q也为任意值。

初始情况: 0, 1, 2 …n-2, n-1 (共n个人)

剩下的n-1个人组成了一个新的约瑟夫环

q q+1 q+2 … n-2, n-1, 0, 1, 2, …,q-3, q-2

编号做一下转换: x ′ = x x'=x x=x

q --> 0
q+1 --> 1
q+2 --> 2

q-2 --> n-2
q-1 --> n-1

变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去刚好就是n个人情况的解。

x − > x ' x ->x' x>

0 -> k
1 -> k+1
2 -> k+2

n-2 -> k-2

变回去的公式x’=(x+k)%n

所以若x=f(n-1),那么有f(n)=[ f(n-1)+k]%n

并且知道f(1)=0。

5.如果在4的基础上,加上一个条件,第一次删除的数是m。

那么答案=[m-k+1+f(n)]%n。

例题:

UvaLive 3882


#include <bits/stdc++.h>

using namespace std;
const int maxn = 1e5+10;

int f[maxn];
int main()
{
    int n,k,m;
    while(scanf("%d%d%d",&n,&k,&m)==3&&n) {
        f[1] = 0;
        for(int i=2;i<=n;i++)
            f[i]=(k+f[i-1])%i;
        int ans = (m-k+1+f[n])%n;
        if(ans<=0) ans+=n;
        printf("%d\n",ans);
    }
    return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值