知识点:约瑟夫环递推公式

传送:http://www.cnblogs.com/kkrisen/p/3569281.html

递推公式:f[1]=0,f[n]=(f[n-1]+k)%n。f[i]是有i个人时,胜出的那个人的编号(编号从0~n-1)

我一开始一直没理解这个递推是怎么来的,后来终于理解了

假设问题是从n个人编号分别为0...n-1,取第k个,

则第k个人编号为k-1的淘汰,剩下的编号为  0,1,2,3...k-2,k,k+1,k+2...

此时因为从刚刚淘汰那个人的下一个开始数起,因此重新编号

把k号设置为0,则

k    0

k+1 1

...

0 n-k

1 n-k+1

假设已经求得了n-1个人情况下的最终胜利者保存在f[n-1]中,则毫无疑问,该胜利者还原到原来的真正编号即为 (f[n-1]+k)%n (因为第二轮重新编号的时候,相当于把每个人的编号都减了k,因此重新+k即可恢复到原来编号)。由此,我们可以想象,当最终只剩下一个人的时候,该人即为胜利者,此时重新编号,因为只有一个人,所以此时f[1]=0

这样f[2]=(f[1]+k)%2,这样就可以求出最终胜利者在2个人的时候的情况下的编号,由递推公式f[n]=(f[n-1]+k)%n,可递推到最初编号序列中该胜利者的编号。

因此用这个方法,只需一遍On的扫描,即可求出最终答案

不过该题要求编号从1开始,只要把f[n]+1即可。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值