函数
文章目录
引子:
要求1-15的和;
求23-36的和;
求55-68的和。
def sum(a,b):
sum = 0
for i in range(a,b+1):
sum += i
return sum
print(sum(1,15))
print(sum(23,36))
print(sum(55,68))
120
413
861
对于程序而言:函数就是一个对程序逻辑进行结构化或者过程化的一种编程方法。
built-in function 内置函数 —> BIF
函数的定义
声明函数的一般形式:
def function_name(arg1,arg2,...,argn):
'''statements'''
func_statements
return Value
说明如下:
1.函数代码块以 def 关键词开头,后接函数标识符名称和小括号 ()。
2.任何传入参数和自变量必须放在圆括号中间,圆括号之间可以用于定义参数。
3.函数的第一行语句可以选择性地使用文档字符串----用于存放函数说明。
4.函数内容以冒号起始,并且缩进。
5.return [表达式] 结束函数,选择性的返回一个值给调用方。不带表达式的return相当于返回 None。
其中参数列表和返回值不是必须的,return后也可以不跟返回值,甚至连 return也没有。
对于return后没有返回值的和没有return语句的函数都会返回None值
有些函数可能既不需要传递参数,也没有返回值。
没有参数时,包含参数的圆括号也必须写上,圆括号后也必须有“:”。
函数调用
函数文档说明
函数参数
- 不传参函数
- 参数函数
- 顺序
函数返回值
函数参数种类
形参和实参
-
形参
- 只有在调用时才分配内存单元,调用结束后,立即释放所分配的内存单元。因此,形参只在内部有效,函数调用结束返回主调用函数后则不能再使用该形参变量
-
实参
- 实参是一个确定的值,能够传递给形参
- 作为位置参数或者关键字参数传递
- 实参是一个确定的值,能够传递给形参
位置参数
def usr_manage(name,age,job,hobby):
print("用户管理系统".center(16,'-'))
print("\tName:\t",name)
print("\tAge:\t",age)
print("\tjob:\t",job)
print("\thobby:\t",hobby)
print("用户管理系统".center(16,'-'))
usr_manage("Tom",20,"IT","Coding")
usr_manage("Jim",21,"Student","Reading")
只传递参数,位置 —对应—>位置参数
使用位置参数时和函数头定义的形参在顺序,个数以及类型上匹配。
默认值参数
def usr_manage(name,age,job,hobby = "Trip"):
print("用户管理系统".center(16,'-'))
print("\tName:\t",name)
print("\tAge:\t",age)
print("\tjob:\t",job)
print("\thobby:\t",hobby)
print("用户管理系统".center(16,'-'))
usr_manage("Tom",20,"IT","Coding")
usr_manage("Jim",21,"Student")
关键字参数
def usr_manage(name,age,job="IT",hobby = "Trip"):
print("用户管理系统".center(16,'-'))
print("\tName:\t",name)
print("\tAge:\t",age)
print("\tjob:\t",job)
print("\thobby:\t",hobby)
print("用户管理系统".center(16,'-'))
usr_manage("Tom",20,hobby="Coding",job="Student")
usr_manage("Jim",21,"Student")
默认值参数,关键字参数,必须放置于位置参数之后。
不定参数
在Python中不定参数主要指*args
和**kwargs
两个魔法变量。
他们俩主要是用于函数定义,我们可以将不定数量的参数传递给一个函数。
*args
用来接收任意非键值对的任意数量的参数列表给函数
def uncertain_para(para,*args):
print("普通位置参数:",para)
print("不定参数:",args)
print(type(args))
uncertain_para(1,2,3,4,'a','b')
uncertain_para([1,2,3],"ab","cd","ef")
普通位置参数: 1
不定参数: (2, 3, 4, 'a', 'b')
<class 'tuple'>
普通位置参数: [1, 2, 3]
不定参数: ('ab', 'cd', 'ef')
<class 'tuple'>
**kwargs
用来接收任意不定长度的键值对列表
def un_para_key(a,b,*c,**kwargs):
print(a,b,c,kwargs)
print(type(kwargs))
un_para_key(1,2,3,4,5,'a','b',e=1,r=2,g=3,d=4)
1 2 (3, 4, 5, 'a', 'b') {'e': 1, 'r': 2, 'g': 3, 'd': 4}
<class 'dict'>
练习:写一个函数,计算传入字符中的数字,字母,空格以及其他字符的个数
str = input("请输入字符串:")
def count(str):
num,alpha,blank,other = 0,0,0,0
for char in str:
if char.isdigit():
num += 1
elif char.isalpha():
alpha += 1
elif char.isspace():
blank += 1
else:
other += 1
print("数字个数:{},字母个数:{},空格个数:{},其他字符个数:{}".format(num,alpha,blank,other))
count(str)
函数引用
函数属性
函数属性是Python中另外一个使用了句点属性标识并拥有名字空间的领域。
你可以获得每个 python 模块,类,和函数中任意的名字空间。你可以在模块 foo 和 bar 里都有名为 x 的一个变量,,但是在将这两个模块导入你的程序后,仍然可以使用这两个变量。所以,即使在两个模块中使用了相同的变量名字,这也是安全的,因为句点属性标识对于两个模块意味了不同的命名空间,比如说,在这段代码中没有名字冲突:
python -i 文件名.py(运行脚本,同时进入解释器)
def foo():
'foo --- Properly created doc string'
def bar():
pass
bar.__doc__ = "Oops,forget the doc str above"
bar.version = 0.1
print(bar.__doc__)
内嵌函数
---->作用域
bar()整个函数都处于外部foo()函数的作用域里(foo()是我们可以从外部访问的一个对象区域)。除了在foo()内部,其他地方无法对bar函数进行调用。
变量作用域
作用域的产生
就作用域而言,python和C有很大差别,只有当变量在module,Class,函数中定义的时候,才会有作用域的概念。
def foo():
a = "foo"
print(a)
foo()
print(a)
foo
Traceback (most recent call last):
File "D:/python/PycharmProjects/chenhan/day06.py", line 144, in <module>
print(a)
NameError: name 'a' is not defined
if True:
a = 100
print(a)
print("-"*5)
print(a)
100
-----
100
在作用域中定义的变量,一般只在作用域内有效。需要注意的是,在if-elif-else,for-else,while-else,try-except(else_finally)等关键字的语句块中不会产生作用域。
作用域的类型
Python中,使用一个变量时并不要求需要预先声明它。但在正真使用的时候,它必须绑定到某个内存对象(被定义,赋值)。这种变量名的绑定将在当前作用域引入新的变量,同时,屏蔽外层作用域中的同名变量。
-
局部作用域(locale —L)
- 局部变量:包含在def关键字定义的语句块中,即在函数中定义的变量。每当函数被调用时都会创建一个新的局部作用域。Python中也有递归,即自己调用自己,每次调用都会创建一个新的局部命名空间。在函数内部的变量声明,除非特别的声明为全局变量,否则均默认为局部变量。有些情况需要在函数内部定义全局变量,这时可以使用global关键字来声明变量的作用域为全局。局部变量域就像一个 栈,仅仅是暂时的存在,依赖创建该局部作用域的函数是否处于活动的状态。所以,一般建议尽量少定义全局变量,因为全局变量在模块文件运行的过程中会一直存在,占用内存空间。
注意:如果需要在函数内部对全局变量赋值,需要在函数内部通过global语句声明该变量为全局变量。
- 局部变量:包含在def关键字定义的语句块中,即在函数中定义的变量。每当函数被调用时都会创建一个新的局部作用域。Python中也有递归,即自己调用自己,每次调用都会创建一个新的局部命名空间。在函数内部的变量声明,除非特别的声明为全局变量,否则均默认为局部变量。有些情况需要在函数内部定义全局变量,这时可以使用global关键字来声明变量的作用域为全局。局部变量域就像一个 栈,仅仅是暂时的存在,依赖创建该局部作用域的函数是否处于活动的状态。所以,一般建议尽量少定义全局变量,因为全局变量在模块文件运行的过程中会一直存在,占用内存空间。
-
嵌套作用域(enclosing — E)
- E也包含在def关键字中,E和L是相对的,E相对于更上层的函数而言也是L。与L的区别在于,对于一个函数而言,L是定义在此函数内部的局部作用域。
- 主要为了实现python的闭包,而增加的实现。
-
全局作用域(Global — G)
- 即在模块层次中定义的变量。模块顶层声明的变量具有全局作用域。从外部来看,模块的全局变量就是一个模块对象的属性。
-
内置作用域(built-in — B)
- 系统固定模块中定义的变量。
搜索变量名的优先级:局部作用域 > 嵌套作用域 > 全局作用域 > 内置作用域
全局变量和局部变量
gbl_str = "foo"
def foo():
loc_str = "bar"
return gbl_str + loc_str
print(foo())
print(gbl_str)
print(loc_str)
foobar
Traceback (most recent call last):
foo
File "D:/python/PycharmProjects/chenhan/day06.py", line 152, in <module>
print(loc_str)
NameError: name 'loc_str' is not defined
a = 6688
def foo():
#a = 666
print("foo(),a:\t",a)
a = 888
print("foo(),a:\t", a)
def bar():
print("bar(),a:\t",a)
foo()
bar()
Traceback (most recent call last):
File "D:/python/PycharmProjects/chenhan/day06.py", line 186, in <module>
foo()
File "D:/python/PycharmProjects/chenhan/day06.py", line 180, in foo
print("foo(),a:\t",a)
UnboundLocalError: local variable 'a' referenced before assignment
#优先搜索局部变量a,但在a被定义之前a已经被引用,报错
global
a = 6688
def foo():
a = 666
def inner_foo():
global a
print("change before",a)
a = 888
print("change after", a)
inner_foo()
print(a)
print(a)
foo()
print(a)
6688
change before 6688
change after 888
666
888
可变类型的全局变量
a = 666
def foo():
a += 1
print(a)
foo()
Traceback (most recent call last):
File "D:/python/PycharmProjects/chenhan/day07.py", line 28, in <module>
foo()
File "D:/python/PycharmProjects/chenhan/day07.py", line 26, in foo
a += 1
UnboundLocalError: local variable 'a' referenced before assignment
递归函数
在一个函数体的内部,调用函数本身,就被称为递归函数
匿名函数(lambda)
格式:
lambda para1,para2,...,paran:exp(para1,para2,...,paran)
demo:
f = lambda x,y,z:x+y+z
print(f(1,2,3))
6
f = lambda x="city",y="college",z="zucc":x+y+z
print(f())
citycollegezucc
高阶函数
- 把一个函数名,以实参的形式,传递给这个函数的形参
def add(a,b,c):
return c(a)+c(b)
a_value = add(-9,-1,abs)
print(a_value)
10
filter 函数
li = ["Zhejiang","University","City","College"]
def func1(para):
list1 = []
for i in para:
if not i.startswith('C'):
list1.append(i)
print(list1)
def func2(para):
list2 = []
for i in para:
if not i.endswith("ty"):
list2.append(i)
print(list2)
def filter_test(arg,func1,func2):
return func1(arg),func2(arg)
li = [2,3,4,5,6]
f = filter(lambda x:x % 2 ==1,li)
print(list(f))
['Zhejiang', 'University']
['Zhejiang', 'College']
功能:
- 过滤掉序列中不符合函数条件的元素。当序列中需要保留的元素可以用某些函数描述时,就应该想到filter函数。
调用格式:
filter(function,sequence)
- function —> 可以是自定义的函数,也可以是匿名函数
- sequence —> 列表元组字符串
map 映射
功能:
- 求一个序列或者多个序列进行函数映射后的值。(用list()强转)
格式:
map(function,iterable1,iterable2)
- function的参数可以不止一个
- iterable1,iterable2就是传入function的参数
li = [1,2,3,4,5]
res = map(lambda x:x+1,li)
print(list(res))
[2, 3, 4, 5, 6]
x = [1,2,3,4,5]
y = [2,3,4,5,6]
res = map(lambda x,y:x*y+2,x,y)
print(list(res))
[4, 8, 14, 22, 32]
def f(x,y):
return x*y+2
res = map(f,x,y)
print(list(res))
[4, 8, 14, 22, 32]
reduce 函数
- 功能
- 对一个序列进行压缩运算,得到一个value。
- python2中,reduce()是内置函数,而在python3中,它被移植到functools模块中。
from functools import reeduce
- 格式
- reduce(function,iterable,[initial])
- function必须要传入两个参数
- reduce(function,iterable,[initial])
from functools import reduce
y = [2,3,4,5,6]
z = reduce(lambda x,y:x+y,y)
print(z)
20
from functools import reduce
y = [2,3,4,5,6]
z = reduce(lambda x,y:x+y,y,100) #加初始值相当于将初始值放入列表第一位,再进行运算
print(z)
120
apply
功能:
- pandas 中,应用对象是pandas中的DataFrame或者Series
- 直接对DataFrame或者Series应用函数
- 对pandas中groupby之后的聚合对象应用apply
zip
功能:
- 将可迭代对象作为参数,将对象中对应的元素打包成一个个元组,返回由这些元组构成的对象
- 长度不一样的时候,以长度短的为准
注:
利用*操作符,与zip相反,进行解压
格式:
zip(iterable1,iterable2,…)
- iterable -->两个或者多个可迭代序列(字符串,列表,元组,字典)
- python2返回由元组组成的列表
- python3返回的是一个对象,如果要得到一个列表,list强转
a = [1,2,3]
b = [4,5,6]
c = [4,5,6,7,8]
ziptest1 = zip(b,a)
print(list(ziptest1))
[(4, 1), (5, 2), (6, 3)]
star_zip = zip(*ziptest1)
print(list(star_zip))
[(4, 5, 6), (1, 2, 3)]
a = {1:11,2:22}
b = {3:33,4:44}
c = {5:55,6:66}
tp = tuple(c)
print(tp)
print(list(zip(a,b,c)))
(5, 6)
[(1, 3, 5), (2, 4, 6)] #对字典进行操作时,只会对键进行操作