先看看,激光雷达/高光谱激光雷达距离效应
再来说波形分解,
这里是一个回波波形处理算法示例,算法前半段内含单波长波形分解算法
通常情况下都是:
1.去噪。通过某些滤波的方法进行去噪,得到预处理后的波形。
2.高斯分解/广义高斯分解/对数正态分解等一些模型。对预处理后的波形,提取模型的初始参数值。具体先对预处理后的波形,先求个一阶导数,找到一阶导数值为0的点,然后对预处理波形求二阶导,根据二阶导,找到全波形函数的极大值,再找到与所有极大值点最近邻的两个极小值点,然后根据极小值点(驻点)t2k和t2k-1,将半高宽初始值可以视为(t2k-t2k-1)/2,将中心位置μ和峰值初值也设置好,如果选用广义高斯分解模型的话,形状参数可以暂时设置为根号2。
3.参数优化。选用非线性最小二乘法或者其他合适的优化算法,其中非线性最小二乘法容易陷入局部最优,因此需要选择合适的算法。
实际中波形数据是散点,而非连续可直接写出的明确参数值的函数表达式,因此需要使用数值微分方法求一阶和二阶导。
下面列几篇涉及参数初始化和参数优化的文章。
张良在《大光斑激光雷达数据的森林冠层高度反演》中使用的方法为:
一个比较实用的参数初始化方法,就是采用5ns的窗口进行滑动搜寻,如果其中心位置的高斯能量值大于前后各两个位置的能量值,且该中心位置与其他峰值中心位置峰值距离不小于10ns,则认为该中心位置为高斯波峰所在位置。
赖旭东在《基于改进差分进化算法的机载激光雷达波形分解》中说:
采样点 DN 值的最小值作为背景噪声 b 的初值;接着,将滤波后的回波最大值作为一个分量的振幅A,若A大于阈值(以3σnoise作为波峰的阈值条件),则将其对应的位置视作波峰位置 u;再对该波峰两侧一定范围内寻找左右两个拐点的位置 p1和p2,根据式(3)计算半波宽σ;σ = | p1 - p2|/2 . (3)然后,设定形状参数 α 的初始值为 根号2,将提取出的分量作为一个子波形从波形数据中减去,并不断重复该过程,直至剩余数据中最大值不满足阈值条件为止。
该文使用的形状参数未知的广义高斯函数。
高斯函数形状:
广义高斯函数形状:
杨学博在《大光斑LiDAR全波形数据小波变换的高斯递进分解》中使用:
小波变换提取波形初始特征参数,可以找到波峰,然后再左右滑动求得拐点。
李洪鹏在《全波形激光雷达回波分解方法》中使用,对离散数据点使用数值微分获取滤波波形的一阶导数和二阶导数,并由一阶和二阶导数的零点得到滤波波形的极值点和拐点。
或者可以计算预处理后波形的每一点的斜率,斜率发生正负变化的点就是拐点,或者用slope函数直接计算。
重点来了!!!希望下面这篇文章中Rclonte-M分解算法对大家有启发,里面算法前半部分介绍了单波长分解算法,大家可以参考研究哈。
Title:Toward an Advanced Method for Full-Waveform Hyperspectral LiDAR Data Processing
DOI: 10.1109/TGRS.2024.3382481
引用格式:
Bai J, Niu Z*, Bi K, Yang X, Huang Y, Fu Y, Wu M, Wang L* (2024). Toward An Advanced Method for Full-Waveform Hyperspectral LiDAR Data Processing. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-16.
和我们的Rclonte算法(见Bai et al., RSE, 2024)不同的是,Rclonte-M采用了一种中心位置排序后直接取中值的参数补偿策略,该研究简化了高光谱激光雷达波形数据处理Rclonte系列最初原始算法,考虑了在多自然目标各波长中心位置降序排列(Ranking Central Locations of Natural Target Echoes, Rclonte)后直接取中值(Median)的策略(Rclonte-M),去弥补或修正真实场景中漏检错检目标参量,研究采用了USGS反射光谱库数据构建了模拟数据集,并相比Rclonte算法实验,为避免实验设计带来的反射光谱反演的便利性变换了自然目标位置,并在三个自然目标场景数据集上进行了实验,测距和光谱恢复结果充分表明了算法在波形处理上的优越性和简洁性。
Title:Full-waveform hyperspectral LiDAR data decomposition via ranking central locations of natural target echoes (Rclonte) at different wavelengths
DOI: 10.1016/j.rse.2024.114227
引用格式:
Bai, J., Niu, Z., Huang, Y., Bi K., Fu Y., Gao S., Wu M., Wang L. (2024). Full-waveform hyperspectral LiDAR data decomposition via ranking central locations of natural target echoes (Rclonte) at different wavelengths, Remote Sensing of Environment, 310, 114227. (TOP, IF = 11.1).