激光雷达/高光谱激光雷达距离效应
回波波形处理算法示例,算法前半段内含单波长波形分解算法
半高宽(Full-width at the half of the maximum, FWHM)是指回波波峰一半所对应的时间全宽,是时间概念,单位一般为ns等。
F
W
H
M
=
2
2
l
n
2
σ
FWHM =2\sqrt{2ln2}\ \sigma
FWHM=22ln2 σ
计算过程,如下;
拐点横坐标差值绝对值一半拐点是指预处理后的波形数据求二阶导后,二阶导为0的点,叫拐点,包括横纵坐标(拐点不同于零点,零点只指横坐标)。拐点横坐标差值绝对值一半,计算方式为,极大值左右的两个拐点,二者横坐标求差,取绝对值,再除以2。
标准差是指波形数据和均值之间的差的平方求和,除以n,再开根号。
需要记住的是,高斯函数曲线在
x
±
σ
x± \sigma
x±σ 处有拐点,也就是拐点差值绝对值一半等于
σ
\sigma
σ,即等于标准差。
对于高斯函数图形左侧,先有一半峰值高点,再有拐点,在拐点处,曲线凹凸性改变。因此半高宽的一半往往大于拐点差值绝对值一半。
重点来了!希望下面这篇文章中Rclonte-M分解算法对大家有启发,里面算法前半部分介绍了单波长分解算法,大家可以参考研究哈。
Title:Toward an Advanced Method for Full-Waveform Hyperspectral LiDAR Data Processing
DOI: 10.1109/TGRS.2024.3382481
引用格式:
Bai J, Niu Z*, Bi K, Yang X, Huang Y, Fu Y, Wu M, Wang L* (2024). Toward An Advanced Method for Full-Waveform Hyperspectral LiDAR Data Processing. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-16.
和我们的Rclonte算法(见Bai et al., RSE, 2024)不同的是,Rclonte-M采用了一种中心位置排序后直接取中值的参数补偿策略,该研究简化了高光谱激光雷达波形数据处理Rclonte系列最初原始算法,考虑了在多自然目标各波长中心位置降序排列(Ranking Central Locations of Natural Target Echoes, Rclonte)后直接取中值(Median)的策略(Rclonte-M),去弥补或修正真实场景中漏检错检目标参量,研究采用了USGS反射光谱库数据构建了模拟数据集,并相比Rclonte算法实验,为避免实验设计带来的反射光谱反演的便利性变换了自然目标位置,并在三个自然目标场景数据集上进行了实验,测距和光谱恢复结果充分表明了算法在波形处理上的优越性和简洁性。
Title:Full-waveform hyperspectral LiDAR data decomposition via ranking central locations of natural target echoes (Rclonte) at different wavelengths
DOI: 10.1016/j.rse.2024.114227
引用格式:
Bai, J., Niu, Z., Huang, Y., Bi K., Fu Y., Gao S., Wu M., Wang L. (2024). Full-waveform hyperspectral LiDAR data decomposition via ranking central locations of natural target echoes (Rclonte) at different wavelengths, Remote Sensing of Environment, 310, 114227. (TOP, IF = 11.1).