RGB变换到HSI再变回到RGB的影像融合

该博客介绍了一种利用HSI色彩空间进行影像融合的方法。通过将高分辨率灰度图片的I分量替换低分辨率RGB图片的I分量,然后反向转换回RGB,以提高彩色图片的清晰度。在转换过程中,RGB分量需先归一化,并在Python中使用PIL库处理可能超出255的数值。尽管存在变换误差,作者提供了解决方案,即当转换后的RGB与原始值差异过大时,保留原始像素值。
摘要由CSDN通过智能技术生成

使用一张高分辨率的灰度图片和一张低分辨率的RGB图片,将RGB变换到HSI,再将I分量用灰度图片替换,然后再映射回到RGB,即可实现使彩色图片更清晰。RGB->HSI变换规则如下:


需要注意,R G B三分量归一化(归一化方式有多种)!!!!

HSI转化到RGB的资料较少,通常为:(通常对应的是上表算法1的逆变换)

 

           使用python PIL库编写时,注意split()后,R G B每个分量是8位,计算过程中可能使数字超过255,要做好相应处理!!!由于之前归一化,故逆变换后记得复原像素值数量级。(乘255)

代码如下:

from PIL import Image
import numpy as np
import math

'''
##将RB转为灰度图,   matplotlib没有该函数
def rgb2gray(rgb):
    return np.dot(rgb[...,:3], [0.333, 0.111, 0.555])
'''
cgGray=Image.open('C:\\
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值