Python实现汉诺塔算法

Python实现汉诺塔算法案例

汉诺塔的规则:

注:图片素材–>路飞学城

在这里插入图片描述

算法过程原理:

在这里插入图片描述
根据上图,利用递归实现汉诺塔算法。

算法实现:

def hanoi(n, a, b, c):  # //n是当前函数里圆盘的个数,a,b,c代表三个圆盘的位置
    if n > 0:
        hanoi(n - 1, a, c, b)  # 把上面的n-1个圆盘,从a经过c移动到b
        print("从%s到%s" % (a, c))  # 把第n个圆盘从a移动到c
        hanoi(n - 1, b, a, c)  # 把那n-1块个圆盘,从b经过a移动到c


hanoi(3, 'A', 'B', 'C')  # 函数调用

当圆盘数为3时,程序运行的结果为:
A->C
A->B
C->B
A->C
B->A
B->C
A->C

总结:巧妙利用递归调用自身的特点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值