Python实现汉诺塔算法案例
汉诺塔的规则:
注:图片素材–>路飞学城
算法过程原理:
根据上图,利用递归实现汉诺塔算法。
算法实现:
def hanoi(n, a, b, c): # //n是当前函数里圆盘的个数,a,b,c代表三个圆盘的位置
if n > 0:
hanoi(n - 1, a, c, b) # 把上面的n-1个圆盘,从a经过c移动到b
print("从%s到%s" % (a, c)) # 把第n个圆盘从a移动到c
hanoi(n - 1, b, a, c) # 把那n-1块个圆盘,从b经过a移动到c
hanoi(3, 'A', 'B', 'C') # 函数调用
当圆盘数为3时,程序运行的结果为:
A->C
A->B
C->B
A->C
B->A
B->C
A->C
总结:巧妙利用递归调用自身的特点