小白自学机器学习----1.线性回归理解,证明,实例

本文介绍了线性回归的基本概念,包括模型解释、评估方法和模型求解。通过实例展示了线性回归如何从一元到多元,以及在实际案例中应用和效果。并提及了梯度下降法在求解过程中的作用。
摘要由CSDN通过智能技术生成

一. 线性回归是什么?

  线性回归就是线性的回归。线性是形容词,回归是本质。  

  我对于视觉记忆比较深刻,所以我们先上图。

  这张图就是一个线性回归的实例,红色的点是实际的值,蓝色为估计的线性方程

  我们回归的目的就是研究横坐标和纵坐标的关系,当然我们首先考虑这个关系是不是线性的,换句话说这些点关系可不可以用多项式表示

       w, b 分别是直线的斜率和截据,也是线性回归最终需要获取的结果。

  

   这张图是线性回归最简单的形式,一维,只有一个自变量,一个特征(Feature)

  但是现实生活中,并不是所有的东西都只有一个特征,可能是好几个特征决定一个结果

  例如,成绩总分是由所有学科的分数相加,各个学科就是不同的特征,总分就是最终想要的结果,并不能用单个成绩来预测总分

  线性回归的公式是Y = w1 * x1 + w2 * x2 + ... + wn * xn + b

               = \sum wi * xi + b

  用成绩来说,语文x1,数学x2,英语x3三门学科成绩为输入,总分y为输出

  那么可以得到这样的模型 y = x1+x2+x3 (w1, w2, w3 均为1)

二. 线性回归模型评估

 评估函数的建立

     模型建立完成后,我们是不知道它是不是真的优秀。

  想要知道模型是否优秀,就需要对模型进行评估度量。

  评估是什么意思呢,就是预测值y_preddict和我们真实数据y的差距。通过这个值的大小来判断模型的好坏。

  机器学习代码中经常看到的Loss损失值,就是我们的评估度量模型的函数,输入预测值和真实值,输出损失

 

  在统计学中,有很多度量的方法,但是统计学几乎忘没了 T_T 要慢慢地多掌握些统计内容。

  目前我接触到线性回归使用最多的是平方和误差

  还是先通过直观的案例认识一下什么是平方和误差

  平方和误差就是每个真实点到预测直线之间距离的平方之和,每个红点到蓝线的距离的平方 累加

  平方和误差越大,那么真实值距离预测直线越远,那么这个模型就不好

  所以我们希望这个平方和误差是越小越好的,这个思想就是最小二乘法

  

  使用公式可以表示为

  Loss = \sum (yi - y pred i)^{2}

       = \sum (yi - w*xi - bi)^{2}

  基础的损失模型建立后,可以加入正则化部分(regularization)P(w)

  <

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值