机器学习模型设计后,还仅仅只是第一步,模型后期的调整也是机器学习非常重要的部分
在说模型后期调整前,再整理一下机器模型设计的基本步骤
1. 分析数据:分析、处理数据
2. 设计模型:神经模块叠加,激活函数选择
3. 损失函数:评估模型是否优秀
4. 优化函数:通过最小化损失函数,调整神经模块中的参数,一般为GD(梯度下降)、SGD(随机梯度下降)、Adam(Ada+Momentum 自适应+动量)
5. 训练集:使用训练集,通过循环执行优化函数对设计模型进行参数调整
6. 验证集:使用训练集训练好的参数,进行检测,看输出损失函数如何
7. 测试集:与验证集一样,分出验证集主要是由于测试集可能不会给出,所以需要自己划分验证集
当模型表现不好时,我们需要怎么改进模型呢?
训练集改进
首先,我们得问自己,模型在训练集(Training Set)中表现的好不好!
之前我就只看测试集中的表现,但其实如果模型在已有训练集中都表现不好,基本不太可能在测试集得到好结果
所以训练集获得的效果不太好时,我们有哪些方法对模型进行改进呢?
神经元个数
在每一层网络中,调整适合的神经元个数。理论上,一个拥有很多个神经元层可以表示任何的关系,可以适当增加神经元个数。但是也不能设置的太大,物极必反。
激活函数
sigmod、relu、tanh、softplus、sof