小白自学机器学习----2. 模型改进思路总结

本文介绍了机器学习模型设计的基本步骤,并着重讨论了模型改进策略。当模型在训练集表现不佳时,可通过调整神经元个数、激活函数、损失函数和优化函数来改善。在测试集上遇到过拟合问题时,可以采用Early Stopping、正则化和Dropout等方法。
摘要由CSDN通过智能技术生成

机器学习模型设计后,还仅仅只是第一步,模型后期的调整也是机器学习非常重要的部分

在说模型后期调整前,再整理一下机器模型设计的基本步骤

1. 分析数据:分析、处理数据

2. 设计模型:神经模块叠加,激活函数选择

3. 损失函数:评估模型是否优秀

4. 优化函数:通过最小化损失函数,调整神经模块中的参数,一般为GD(梯度下降)、SGD(随机梯度下降)、Adam(Ada+Momentum 自适应+动量)

5. 训练集:使用训练集,通过循环执行优化函数对设计模型进行参数调整

6. 验证集:使用训练集训练好的参数,进行检测,看输出损失函数如何

7. 测试集:与验证集一样,分出验证集主要是由于测试集可能不会给出,所以需要自己划分验证集

 

当模型表现不好时,我们需要怎么改进模型呢?

训练集改进

首先,我们得问自己,模型在训练集(Training Set)中表现的好不好!

之前我就只看测试集中的表现,但其实如果模型在已有训练集中都表现不好,基本不太可能在测试集得到好结果

所以训练集获得的效果不太好时,我们有哪些方法对模型进行改进呢?

神经元个数

在每一层网络中,调整适合的神经元个数。理论上,一个拥有很多个神经元层可以表示任何的关系,可以适当增加神经元个数。但是也不能设置的太大,物极必反。

激活函数

sigmod、relu、tanh、softplus、sof

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值