pandas_day07

import numpy as np
import pandas as pd

7.1 缺失值的统计和删除
7.1.1 缺失信息的统计
缺失数据可以使用isna或isnull来查看每个单元格是否缺失,通过和sum的组合计算出每列缺失值的比例

df = pd.read_csv('learn_pandas.csv', usecols = ['Grade','Name','Gender','Height','Weight','Transfer'])
df.isna().head()
GradeNameGenderHeightWeightTransfer
0FalseFalseFalseFalseFalseFalse
1FalseFalseFalseFalseFalseFalse
2FalseFalseFalseFalseFalseFalse
3FalseFalseFalseTrueFalseFalse
4FalseFalseFalseFalseFalseFalse
# 查看缺失的比例
# Height,Weight,Transfer 均有缺失值(空白->NaN)
df.isna().sum()/df.shape[0]
Grade       0.000
Name        0.000
Gender      0.000
Height      0.085
Weight      0.055
Transfer    0.060
dtype: float64

查看某一列缺失或者非缺失的行,用Series上的isna或notna进行布尔索引
其中,isna会显示NaN的值,notna显示有值的值
查看身高缺失的行:

df[df.Height.isna()].head()
GradeNameGenderHeightWeightTransfer
3SophomoreXiaojuan SunFemaleNaN41.0N
12SeniorPeng YouFemaleNaN48.0NaN
26JuniorYanli YouFemaleNaN48.0N
36FreshmanXiaojuan QinMaleNaN79.0Y
60FreshmanYanpeng LvMaleNaN65.0N

想要同时对几个列检索出全部为缺失或者至少有一个缺失,或者没有缺失的行,可以用isna,notna和any,all组合(any类比or,all类比and)
对身高、体重、转系情况这3列分别进行着三种情况的检索:

sub_set = df[['Height','Weight','Transfer']]
# 全部缺失
df[sub_set.isna().all(1)]
GradeNameGenderHeightWeightTransfer
102JuniorChengli ZhaoMaleNaNNaNNaN
# 至少有一个缺失
df[sub_set.isna().any(1)].head()
GradeNameGenderHeightWeightTransfer
3SophomoreXiaojuan SunFemaleNaN41.0N
9JuniorJuan XuFemale164.8NaNN
12SeniorPeng YouFemaleNaN48.0NaN
21SeniorXiaopeng ShenMale166.062.0NaN
26JuniorYanli YouFemaleNaN48.0N
# 没有缺失
df[sub_set.notna().all(1)].head()
GradeNameGenderHeightWeightTransfer
0FreshmanGaopeng YangFemale158.946.0N
1FreshmanChangqiang YouMale166.570.0N
2SeniorMei SunMale188.989.0N
4SophomoreGaojuan YouMale174.074.0N
5FreshmanXiaoli QianFemale158.051.0N

7.1.2 缺失信息的删除
根据缺失值的大小、比例或其他特征来进行 行样本 或 列特征的删除,使用dropna来操作
dropna主要参数为轴方向axis(0,删除行)、 删除方式how、删除的非缺失值个数预支thresh(非缺失值没有达到这个数量的相应维度会被删除)、备选的删除子集subset,其中how主要有any和all两种参数可以选择
删除身高体重至少有一个缺失的行:

res = df.dropna(how = 'any', subset = ['Height', 'Weight'])
# 原先是200行,dropna删除到174行
res.shape
(174, 6)
# 删除超过15个缺失值的列(列,设为1)
# 非缺失值没有达到df.shape[0]-15数量的相应维度会被删除
res = df.dropna(1, thresh=df.shape[0]-15)
res.head()
# Height被删除
GradeNameGenderWeightTransfer
0FreshmanGaopeng YangFemale46.0N
1FreshmanChangqiang YouMale70.0N
2SeniorMei SunMale89.0N
3SophomoreXiaojuan SunFemale41.0N
4SophomoreGaojuan YouMale74.0N
# 还可以用布尔索引完成
res = df.loc[df[['Height', 'Weight']].notna().all(1)]
res.shape
(174, 6)
# 是nan的数量小于15
res = df.loc[:, ~(df.isna().sum()>15)]
res.head()
GradeNameGenderWeightTransfer
0FreshmanGaopeng YangFemale46.0N
1FreshmanChangqiang YouMale70.0N
2SeniorMei SunMale89.0N
3SophomoreXiaojuan SunFemale41.0N
4SophomoreGaojuan YouMale74.0N

7.2 缺失值的填充和插值
7.2.1 利用fillna进行填充
fillna有三个参数是常用的:value,method,limit
value为填充纸,可以是标量,也可以是索引到元素的字典映射;
method为填充方法,有用前面的元素填充ffill和用后面的元素填充bfill两种类型;
limit参数表示连续缺失值的最大填充次数

s = pd.Series([np.nan, 1, np.nan, np.nan, 2, np.nan], list('aaabcd'))
s
a    NaN
a    1.0
a    NaN
b    NaN
c    2.0
d    NaN
dtype: float64
# 用前面的值向后填充
s.fillna(method='ffill')
a    NaN
a    1.0
a    1.0
b    1.0
c    2.0
d    2.0
dtype: float64
# 连续出现的缺失
s.fillna(method = 'ffill', limit=1)
a    NaN
a    1.0
a    1.0
b    NaN
c    2.0
d    2.0
dtype: float64
# value为标量
# (1.0+2.0)/2 = 1.5
s.fillna(s.mean())
a    1.5
a    1.0
a    1.5
b    1.5
c    2.0
d    1.5
dtype: float64
# 把对应索引所映射的NaN值填充为字典值
s.fillna({'a': 100, 'd': 200})
a    100.0
a      1.0
a    100.0
b      NaN
c      2.0
d    200.0
dtype: float64

练一练
对一个序列以如下规则填充缺失值:如果单独出现的缺失值,就用前后均值填充,如果连续出现
的缺失值就不填充,即序列 [1, NaN, 3, NaN, NaN] 填充后为 [1, 2, 3, NaN, NaN],请利用 fillna函数实现。(提示:利用 limit 参数)

a = pd.Series([1, np.nan, 3, np.nan, np.nan])
a
0    1.0
1    NaN
2    3.0
3    NaN
4    NaN
dtype: float64
f = a.fillna(method = 'ffill', limit=1)
b = a.fillna(method = 'bfill', limit=1)
((f+b)/2).values
array([ 1.,  2.,  3., nan, nan])

7.2.2 插值函数
interpolate函数,包含大量Scipy中的方法。这里只讨论三类情况:线性插值、最近邻插值和索引插值。
对于interpolate,除了插值方法(默认为linear线性插值)之外,有于fillna类似的两个常用参数:控制方向的limit_direction,控制最大连续缺失值差值个数的limit。限制插值的方向默认为forward,与fillna的method中的ffill是类似的,若想要后向限制插值或者双向限制插值,可以指定为backward或both

s = pd.Series([np.nan, np.nan, 1, np.nan, np.nan, np.nan, 2, np.nan, np.nan])
s.values
array([nan, nan,  1., nan, nan, nan,  2., nan, nan])
# 在默认线性插值法下分别进行backward和双向限制插值,同时限制最大连续条数为1:
res = s.interpolate(limit_direction = 'backward', limit = 1)
res.values
array([ nan, 1.  , 1.  ,  nan,  nan, 1.75, 2.  ,  nan,  nan])
res = s.interpolate(limit_direction = 'both', limit=1)
res.values
array([ nan, 1.  , 1.  , 1.25,  nan, 1.75, 2.  , 2.  ,  nan])
# 最近邻插补,即缺失值的元素和离他最近的非缺失值元素一样
s.interpolate('nearest').values
array([nan, nan,  1.,  1.,  1.,  2.,  2., nan, nan])

在群里问了,解答是,不处理nan两侧的数值,中间的缺失值根据两侧的非缺失值补充索引插值,根据索引大小进行线性插值,构造不等间距的索引:

s = pd.Series([0, np.nan, 10], index = [0,1,10])
s
0      0.0
1      NaN
10    10.0
dtype: float64
# 默认的线性插值,等价于计算中点的值
s.interpolate()
0      0.0
1      5.0
10    10.0
dtype: float64
# 和索引有关的线性插值,计算相应索引大小对应的值
# key  value
#  0    0
#  1    1
#  10   10
s.interpolate(method = 'index')
0      0.0
1      1.0
10    10.0
dtype: float64
# 该方法对于时间戳索引也是可以使用的
s = pd.Series([0, np.nan, 10], index=pd.to_datetime(['20200101', '20200102', '20200111']))
s
2020-01-01     0.0
2020-01-02     NaN
2020-01-11    10.0
dtype: float64
s.interpolate()
2020-01-01     0.0
2020-01-02     5.0
2020-01-11    10.0
dtype: float64
s.interpolate(method = 'index')
2020-01-01     0.0
2020-01-02     1.0
2020-01-11    10.0
dtype: float64

7.3 Nullablue类型
7.3.1 缺失记号及其缺陷
python中的缺失值用None表示,该元素除了等于自己本身之外,与其他任何元素不相等

None == None
True
None == False
False
None == []
False
None == ''
False

在numpy中利用np.nan 来表示缺失值,该元素除了不和其他任何元素相等之外,和自身的比较结果也返回False

np.nan == np.nan
False
np.nan == None
False
np.nan == False
False

虽然在对缺失序列或表格的元素进行比较操作的时候,np.nan的对应位置会返回False,但在使用equals函数进行两张表或两个序列的向同性检验时,会自动跳过两侧表都是缺失值的位置,直接返回True:

s1 = pd.Series([1, np.nan])
s2 = pd.Series([1,2])
s3 = pd.Series([1, np.nan])
s1 == 1
0     True
1    False
dtype: bool
s1.equals(s2)
False
s1.equals(s3)
True

在时间序列的对象中,pandas利用的pd.NaT来指代缺失值,作用和np.nan是一致的

# timedelta中用NaT代替numpy中的np.nan
pd.to_timedelta(['30s', np.nan])
TimedeltaIndex(['0 days 00:00:30', NaT], dtype='timedelta64[ns]', freq=None)
# Datetime中的NaT
pd.to_datetime(['20200101', np.nan])
DatetimeIndex(['2020-01-01', 'NaT'], dtype='datetime64[ns]', freq=None)

引入pd.NaT来表示时间对象中的缺失:在pandas中可以看到object类型的对象,object是一种混杂对象类型,如果出现多个类型的元素同时存储在Series中它的类型就会变成object
而np.nan本身是一种浮点类型,如果浮点和时间类型混合存储,如果不涉及新的内置缺失类型来处理,就会变成object类型

# 易错,请注意
type(np.nan)
float

由于np.nan的浮点性质,如果在一个整数的Series中出现缺失,其类型会转变成float64;如果在一个布尔类型的序列中出现缺失,其类型会转为object而不是bool

pd.Series([1, np.nan]).dtype
dtype('float64')
pd.Series([True, False, np.nan]).dtype
dtype('O')

7.3.2 Nullable 类型的性质
序列类型不受缺失值的影响
下面三个Nullable类型中存储缺失值,都会转为pandas内置的pd.NA
需要指定dtype类型,否则统一为object

pd.Series([np.nan, 1], dtype = 'Int64')
0    <NA>
1       1
dtype: Int64
pd.Series([np.nan, True], dtype = 'boolean')
0    <NA>
1    True
dtype: boolean
pd.Series([np.nan, 'my_str'],dtype = 'string')
0      <NA>
1    my_str
dtype: string

在int的序列中,返回的结果会尽可能地成为Nullable的类型

pd.Series([np.nan, 0], dtype = 'Int64') + 1
0    <NA>
1       1
dtype: Int64
pd.Series([np.nan, 0], dtype = 'Int64') == 0
0    <NA>
1    True
dtype: boolean
pd.Series([np.nan, 0], dtype = 'Int64') * 0.5
0    NaN
1    0.0
dtype: float64

对于boolean类型的序列来讲,和bool序列的行为有两点区别:

  1. 带有缺失的布尔列表无法进行索引器中的选择,而boolean会把缺失值看做False
s = pd.Series(['a','b'])
s_bool = pd.Series([True, np.nan])
# 会报错ValueError: Cannot mask with non-boolean array containing NA / NaN values
s[s_bool]
---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

<ipython-input-41-d8b971864d8a> in <module>
      1 s = pd.Series(['a','b'])
      2 s_bool = pd.Series([True, np.nan])
----> 3 s[s_bool]


E:\Anaconda\lib\site-packages\pandas\core\series.py in __getitem__(self, key)
    899             key = list(key)
    900 
--> 901         if com.is_bool_indexer(key):
    902             key = check_bool_indexer(self.index, key)
    903             key = np.asarray(key, dtype=bool)


E:\Anaconda\lib\site-packages\pandas\core\common.py in is_bool_indexer(key)
    132                 na_msg = "Cannot mask with non-boolean array containing NA / NaN values"
    133                 if isna(key).any():
--> 134                     raise ValueError(na_msg)
    135                 return False
    136             return True


ValueError: Cannot mask with non-boolean array containing NA / NaN values
# 直接跳过np.nan
s_boolean = pd.Series([True, np.nan]).astype('boolean')
s[s_boolean]
0    a
dtype: object
  1. 逻辑运算时,bool类型在缺失处返回的永远是False,而boolean会根据逻辑运算是否能确定唯一结果来返回相应的值
    True|pd.NA 无论缺失值为什么值,必然返回True
    False|pd.NA 会根据缺失值取值的不同而变化,此时返回pd.NA
    False&pd.NA 无论缺失值为什么值,必然返回False
s_boolean
0    True
1    <NA>
dtype: boolean
s_boolean & True
0    True
1    <NA>
dtype: boolean
# np.nan 或True ->True
s_boolean | True
0    True
1    True
dtype: boolean
# 取反操作无法唯一地判断缺失结果
-s_boolean
0    False
1     <NA>
dtype: boolean
# 一般在实际数据处理时,可以在数据集读入后,先通过 convert_dtypes 转为 Nullable 类型:
df = pd.read_csv('learn_pandas.csv')
df = df.convert_dtypes()
df.dtypes
School          string
Grade           string
Name            string
Gender          string
Height         float64
Weight           Int64
Transfer        string
Test_Number      Int64
Test_Date       string
Time_Record     string
dtype: object

7.3.3 缺失数据的计算和分组
当调用函数sum, prod 使用加法和乘法的时候,缺失数据等价于被分别视作0和1,即不改变原来的计算结果

s = pd.Series([2, 3, np.nan, 4, 5])
# 被当做0处理
s.sum()
14.0
s.prod()
120.0
# 当使用累计函数时, 会自动跳过缺失值所处的位置
s.cumsum()
0     2.0
1     5.0
2     NaN
3     9.0
4    14.0
dtype: float64

当进行单个标量运算时, 除了np.nan0 和1np.nan这两种情况为确定的值之外,所有运算结果全为缺失(pd.NA的行为与此一致), np.nan在比较操作时一定返回False, 而pd.NA返回pd.NA

np.nan == 0
False
pd.NA == 0
<NA>
np.nan > 0
False
pd.NA > 0
<NA>
np.nan + 1
nan
np.log(np.nan)
nan
np.add(np.nan , 1)
nan
# 确定值
np.nan ** 0
1.0
pd.NA ** 0
1
1 ** np.nan
1.0
1 ** pd.NA
1

diff, pct_change两个函数虽然功能相似, 但对于缺失的处理不同, 前者凡是参与缺失计算的部分全部设为了缺失值, 后者缺失值位置会被设为0%的变化率:

s
0    2.0
1    3.0
2    NaN
3    4.0
4    5.0
dtype: float64
# 和前一个元素做差
s.diff()
0    NaN
1    1.0
2    NaN
3    NaN
4    1.0
dtype: float64
# 增长率, nan设为0%的变化率
s.pct_change()
0         NaN
1    0.500000
2    0.000000
3    0.333333
4    0.250000
dtype: float64

对于一些函数,缺失可以做为一个类别处理,例如在groupby, get_dummies中可以设置相应的参数来进行增加缺失类别

df_nan = pd.DataFrame({'category': ['a','a','b', np.nan, np.nan],
                      'value': [1,3,5,7,9]})
df_nan
categoryvalue
0a1
1a3
2b5
3NaN7
4NaN9
# a (1+3)/2=2, b 5, NaN (7+9)/2=8
# 缺失值的计算
df_nan.groupby('category', dropna=False)['value'].mean()
category
a      2
b      5
NaN    8
Name: value, dtype: int64
# 缺失值的统计
# 是把类别特征转为指示变量,把属于a,b,NaN的指示值标出
pd.get_dummies(df_nan.category, dummy_na=True)
abNaN
0100
1100
2010
3001
4001
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值