LeetCode73.矩阵置零/面试题 01.08. 零矩阵

Question

编写一种算法,若M × N矩阵中某个元素为0,则将其所在的行与列清零。

Example

Example 1:

输入:
[
  [1,1,1],
  [1,0,1],
  [1,1,1]
]
输出:
[
  [1,0,1],
  [0,0,0],
  [1,0,1]
]

Example 2:

输入:
[
  [0,1,2,0],
  [3,4,5,2],
  [1,3,1,5]
]
输出:
[
  [0,0,0,0],
  [0,4,5,0],
  [0,3,1,0]
]

Idea

Solution1:辅助数组

class Solution {
public:
    void setZeroes(vector<vector<int>>& matrix) {
        int m = matrix.size();
        int n = matrix[0].size();
        vector<int> r(m), c(n);
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (!matrix[i][j]) {
                    r[i] = c[j] = true;
                }
            }
        }
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (r[i] || c[j]) {
                    matrix[i][j] = 0;
                }
            }
        }
    }
};

Solution2:第一行第一列作为辅助数组

//代码存在优化空间,此处便于理解未做
class Solution {
public:
    void setZeroes(vector<vector<int>>& matrix) {
        int m = matrix.size(), n = matrix[0].size(), fm = 0, fn = 0;
        //第一行是否有0判断
        for(int i = 0; i < n; i++){
            if(matrix[0][i] == 0){
                fn = 1;
                break;
            }
        }
        //第一列是否有0判断
        for(int i = 0; i < m; i++){
            if(matrix[i][0] == 0){
                fm = 1;
                break;
            }
        }
        for(int i = 1; i < m; i++){
            for(int j = 1; j < n; j++){
                if(matrix[i][j] == 0){
                    matrix[i][0] = 0;
                    matrix[0][j] = 0;
                }
            }
        }
        // 筛选第一行中有0 元素置列为0
        for(int j = 1; j < n; j++){
            if(matrix[0][j] == 0){
                for(int i = 1; i < m; i++){
                    matrix[i][j] = 0;
                }
            }
        }
        // 筛选第一列中有0 元素置行为0
        for(int i = 1; i < m; i++){
            if(matrix[i][0] == 0){
                for(int j = 1; j < n; j++){
                    matrix[i][j] = 0;
                }
            }
        }
        if(fm){
            for(int i = 0; i < m; i++){
                matrix[i][0] = 0;
          }
        }
        if(fn){
            for(int i = 0; i < n; i++){
                matrix[0][i] = 0;
          }
        }
    }
};

Solution3:最后一行作为辅助数组

//代码存在优化空间,此处便于理解未做
class Solution {
public:
    void setZeroes(vector<vector<int>>& matrix) {
        int m = matrix.size(), n = matrix[0].size(), f = 0, tmp = 0;
        //最后一行是否有0判断
        for(int i = 0; i < n; i++){
            if(matrix[m-1][i] == 0){
                f = 1;
                break;
            }
        }
        for(int i = 0; i < m - 1; i++){
            for(int j = 0; j < n; j++){
                if(matrix[i][j] == 0){
                    matrix[m-1][j] = 0;
                    tmp = 1;
                }
                if(tmp && j == n-1){
                    tmp = 0;
                    for(int k = 0; k < n; k++){
                        matrix[i][k] = 0;
                    }
                }
            }
        }
        for(int i = 0; i < n; i++){
            if(matrix[m-1][i] == 0){
                for(int j = 0; j < m - 1; j++){
                    matrix[j][i] = 0;
                }
            }
        }
        if(f){
            for(int i = 0; i < n; i++){
                matrix[m-1][i] = 0;
          }
        }
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xの哲學

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值