时序数据库之---InflxDB(实用篇)

本文介绍了InfluxDB在大数据量下进行时间查询和聚合操作的场景,它是一个用于时间序列数据的非关系型数据库。通过引入'influxdb-spring-boot-starter'依赖,展示了如何配置和使用InfluxDB连接,包括创建和删除数据库、执行查询、插入数据等操作。此外,还提到了使用Grafana进行数据可视化和告警,并提供了InfluxDB中文文档的链接。

使用场景:大数据量下根据时间进行查询或者聚合(监控数据统计)

参考文献:influxdb 基础理论知识(一)_健康平安的活着的博客-CSDN博客_influxdb是关系型数据库吗

pom:

<dependency>
   <groupId>plus.ojbk</groupId>
   <artifactId>influxdb-spring-boot-starter</artifactId>
   <version>1.0.2</version>
</dependency>

import org.influxdb.InfluxDB;
import org.influxdb.InfluxDBFactory;
import org.influxdb.dto.*;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

import java.util.List;
import java.util.Map;
import java.util.concurrent.TimeUnit;

@Component
public class InfluxDBConnection {
	// 用户名

	private String username;
	// 密码
	private String password;
	// 连接地址

	private String openurl;
	// 数据库

	private String database;
	// 保留策略

	private String retentionPolicy;

	private InfluxDB influxDB;

	public InfluxDBConnection(@Value("${influxdb.username}") String username, @Value("${influxdb.password}") String password, @Value("${influxdb.url}") String openurl, @Value("${influxdb.database}") String database, @Value("${influxdb.retentionPolicy}") String retentionPolicy) {
		this.username = username;
		this.password = password;
		this.openurl = openurl;
		this.database = database;
		this.retentionPolicy = retentionPolicy == null || retentionPolicy.equals("") ? "autogen" : retentionPolicy;
		influxDbBuild();
	}

	/**
	 * 创建数据库
	 *
	 * @param dbName
	 */
	@SuppressWarnings("deprecation")
	public void createDB(String dbName) {
		influxDB.createDatabase(dbName);
	}

	/**
	 * 删除数据库
	 *
	 * @param dbName
	 */
	@SuppressWarnings("deprecation")
	public void deleteDB(String dbName) {
		influxDB.deleteDatabase(dbName);
	}

	/**
	 * 测试连接是否正常
	 *
	 * @return true 正常
	 */
	public boolean ping() {
		boolean isConnected = false;
		Pong pong;
		try {
			pong = influxDB.ping();
			if (pong != null) {
				isConnected = true;
			}
		} catch (Exception e) {
			e.printStackTrace();
		}
		return isConnected;
	}

	/**
	 * 连接时序数据库 ,若不存在则创建
	 *
	 * @return
	 */
	public InfluxDB influxDbBuild() {
		if (influxDB == null) {
			influxDB = InfluxDBFactory.connect(openurl, username, password);
		}
		try {
			// if (!influxDB.databaseExists(database)) {
			// influxDB.createDatabase(database);
			// }
		} catch (Exception e) {
			// 该数据库可能设置动态代理,不支持创建数据库
			// e.printStackTrace();
		} finally {
			influxDB.setRetentionPolicy(retentionPolicy);
		}
		influxDB.setLogLevel(InfluxDB.LogLevel.NONE);
		return influxDB;
	}

	/**
	 * 创建自定义保留策略
	 *
	 * @param policyName  策略名
	 * @param duration    保存天数
	 * @param replication 保存副本数量
	 * @param isDefault   是否设为默认保留策略
	 */
	public void createRetentionPolicy(String policyName, String duration, int replication, Boolean isDefault) {
		String sql = String.format("CREATE RETENTION POLICY \"%s\" ON \"%s\" DURATION %s REPLICATION %s ", policyName,
				database, duration, replication);
		if (isDefault) {
			sql = sql + " DEFAULT";
		}
		this.query(sql);
	}

	/**
	 * 创建默认的保留策略
	 *
	 * @param 策略名:default,保存天数:30天,保存副本数量:1 设为默认保留策略
	 */
	public void createDefaultRetentionPolicy() {
		String command = String.format("CREATE RETENTION POLICY \"%s\" ON \"%s\" DURATION %s REPLICATION %s DEFAULT",
				"default", database, "30d", 1);
		this.query(command);
	}

	/**
	 * 查询
	 *
	 * @param command 查询语句
	 * @return
	 */
	public QueryResult query(String command) {
		return influxDB.query(new Query(command, database));
	}

	/**
	 * 插入
	 *
	 * @param measurement 表
	 * @param tags        标签
	 * @param fields      字段
	 */
	public void insert(String measurement, Map<String, String> tags, Map<String, Object> fields, long time,
					   TimeUnit timeUnit) {
		Point.Builder builder = Point.measurement(measurement);
		builder.tag(tags);
		builder.fields(fields);
		if (0 != time) {
			builder.time(time, timeUnit);
		}
		influxDB.write(database, retentionPolicy, builder.build());
	}

	/**
	 * 批量写入测点
	 *
	 * @param batchPoints
	 */
	public void batchInsert(BatchPoints batchPoints) {
		influxDB.write(batchPoints);
		// influxDB.enableGzip();
		// influxDB.enableBatch(2000,100,TimeUnit.MILLISECONDS);
		// influxDB.disableGzip();
		// influxDB.disableBatch();
	}

	/**
	 * 批量写入数据
	 *
	 * @param database        数据库
	 * @param retentionPolicy 保存策略
	 * @param consistency     一致性
	 * @param records         要保存的数据(调用BatchPoints.lineProtocol()可得到一条record)
	 */
	public void batchInsert(final String database, final String retentionPolicy, final InfluxDB.ConsistencyLevel consistency,
							final List<String> records) {
		influxDB.write(database, retentionPolicy, consistency, records);
	}

	/**
	 * 删除
	 *
	 * @param command 删除语句
	 * @return 返回错误信息
	 */
	public String deleteMeasurementData(String command) {
		QueryResult result = influxDB.query(new Query(command, database));
		return result.getError();
	}

	/**
	 * 关闭数据库
	 */
	public void close() {
		influxDB.close();
	}

	/**
	 * 构建Point
	 *
	 * @param measurement
	 * @param time
	 * @param fields
	 * @return
	 */
	public Point pointBuilder(String measurement, long time, Map<String, String> tags, Map<String, Object> fields) {
		Point point = Point.measurement(measurement).time(time, TimeUnit.MILLISECONDS).tag(tags).fields(fields).build();
		return point;
	}

}

使用时调用insert方法:

        measurement:可以理解为表名

        tags:带索引的列

        fields:不带索引的列

        time:时间戳,表中唯一主键

Linux下暂时没啥能用的可视化界面,一般都是采用命令行查询

推荐使用Grafana进行数据查询或者告警

使用文档链接:InfluxDB中文文档.pdf

链接: https://pan.baidu.com/s/181prmn2C3Pbil3IyFHbrXg?pwd=1111 提取码: 1111 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值