组合数学-多重集排列组合问题

"这篇博客探讨了多重集全排列定理及其在解决象棋车排列问题中的应用。通过两种解法详细阐述如何处理存在上下限约束的组合问题。特别地,文章提到了当元素只有下限时的解决策略,并给出了解决存在上限问题的思考方向,但指出当上下限同时存在时,需要使用容斥原理来解决。此外,还讨论了涉及特定元素如{8a,8b}

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

组合数学-多重集象棋车的排列问题

多重集r-排列及其证明

在这里插入图片描述

多重集全排列定理及其证明

了解主题前先知道这个定理,方便接下来的讨论

解法1

在这里插入图片描述

解法2

在这里插入图片描述

象棋车的排列问题

在这里插入图片描述

解法

在这里插入图片描述

多重集组合问题

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
当多重集的元素只存在上限或者只存在下限可以按照上述方法求解,同时存在上下限的情况的部分是容斥原理能轻松解决的,下部分再补充。

这里上面的例子是解决下限的问题,关于上限的问题,这里提供一个解决思路,对上限问题,可以将x≤m的不等式转化为-x≥-m,既m-x≥0,用y=m-x≥0代换,再将y代入x1+x2+…+xn=组合数,但注意,这里只针对x全只是有上限的情况,负责会因为符号问题导致代换后的式子,既y1+y2+…+yn的值无法求出(当然这里提到的x下限和上限是指x只能全为下限/上限,如果同时存在,这个方法是求解不了,只能通过容斥原理求得)

待解决了除了元素同时存在上下限的问题,还有上述问题中,如果问题改成:求出{8a,8b}的多重集中9组合问题,上述定理不太适用,需要讨论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值